PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 5 | 1138-1143
Article title

Acoustic Streaming Induced by Periodic and Aperiodic Sound in a Bubbly Liquid

Content
Title variants
Languages of publication
EN
Abstracts
EN
The vortex flow which follows intense sound propagating in a bubbly liquid, is considered. The reasons for acoustic streaming are both nonlinearity and dispersion. That makes streaming especial as compared with that in a Newtonian fluid. Conclusions concern the vortex flow induced in a half-space by initially harmonic or impulse Gaussian beam. The vortex flow recalls a turbulent flow with increasing in time number of small-scale vortices in the vicinity of the axis of a beam's propagation.
Keywords
EN
Publisher

Year
Volume
125
Issue
5
Pages
1138-1143
Physical description
Dates
published
2014-05
received
2013-12-05
(unknown)
2014-03-15
Contributors
author
  • Gdańsk University of Technology, Faculty of Applied Physics and Mathematics G. Narutowicza 11/12, 80-233 Gdańsk, Poland
author
  • Gdańsk University of Technology, Faculty of Applied Physics and Mathematics G. Narutowicza 11/12, 80-233 Gdańsk, Poland
References
  • [1] L.I. Mandelshtam, M.A. Leontowich, JETP 7, 438 (1937)
  • [2] M. Hamilton, Y. Ilinskii, E. Zabolotskaya, in: Nonlinear Acoustics, Eds. M. Hamilton, D. Blackstock, Academic Press, New York 1998, p. 151, doi: 10.1121/1.426968
  • [3] S.B. Leble, Nonlinear Waves in Waveguides: with Stratification, Springer-Verlag, Berlin 1991, doi: 10.1007/978-3-642-75420-3
  • [4] A.I. Osipov, A.V. Uvarov, Sov. Phys. Usp. 35, 903 (1992), doi: 10.1070/PU1992v035n11ABEH002275
  • [5] L. van Wijngaarden, Acta Appl. Math. 39, 507 (1995)
  • [6] J.B. Keller, M. Miksis, J. Acoust. Soc. Am. 68, 628 (1980), doi: 10.1121/1.384720
  • [7] R.I. Nigmatulin, N.S. Khabeev, F.B. Nagiev, Heat Mass Transf. 24, 1033 (1981), doi: 10.1016/0017-9310(81)90134-4
  • [8] M. Plesset, A. Prosperetti, Ann. Rev. Fluid Mech. 9, 145 (1977), doi: 10.1146/annurev.fl.09.010177.001045
  • [9] E.A. Zabolotskaya, S.I. Soluyan, Sov. Phys. Acoust. 18, 396 (1973)
  • [10] O.V. Rudenko, S.I. Soluyan, Theoretical Foundations of Nonlinear Acoustics, Plenum, New York 1977, doi: 10.1007/978-1-4899-4794-9
  • [11] V.P. Kuznetsov, Sov. Phys. Acoust. 16, 467 (1971)
  • [12] M. Hamilton, V. Khokhlova, O.V. Rudenko, J. Acoust. Soc. Am. 101, 1298 (1997), doi: 10.1121/1.418158
  • [13] B.-T. Chu, L.S.G. Kovasznay, J. Fluid. Mech. 3, 494 (1958)
  • [14] P. Marmottant, J.P. Raven, H. Gardeniers, J.G. Bomer, S. Hilgenfeldt, J. Fluid Mech. 568, 109 (2006), doi: 10.1017/S0022112006002746
  • [15] D. Ahmed, X. Mao, J. Shi, B.K. Juluria, T.J. Huang, Lab Chip 9, 2738 (2009), doi: 10.1039/b903687c
  • [16] A. Perelomova, Acta Acustica united with Acustica 89, 754 (2003)
  • [17] A. Perelomova, Acta Acustica united with Acustica 96, 43 (2010), doi: 10.3813/AAA.918254
  • [18] A. Perelomova, Canad. J. Phys. 88, 293 (2010), doi: 10.1139/P10-011
  • [19] A. Prosperetti, A. Lezzi, J. Fluid Mech. 168, 457 (1986), doi: 10.1017/S0022112086000460
  • [20] A. Perelomova, Appl. Math. Lett. 13, 93 (2000), doi: 10.1016/S0893-9659(00)00082-3
  • [21] T.G. Leighton, The Acoustic Bubble, Academic Press, New York 1994
  • [22] R. Fletcher, 'Conjugate gradient methods for indefinite systems', Lect. Notes Math. 506, 73 (1976), doi: 10.1007/BFb0080116
  • [23] T. Kamakura, K. Matsuda, Y. Kumamoto, M.A. Breazeale, J. Acoust. Soc. Am. 97, 2740 (1995), doi: 10.1121/1.411904
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n512kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.