Journal
Article title
Title variants
Languages of publication
Abstracts
The squeezing and sub-Poissonian effects of light in third harmonic generation are investigated based on the fully quantum mechanical approach up to the first order Hamiltonian interaction in gt, where g is the coupling constant between the modes per second and t is the interaction time between the waves during the process in a nonlinear medium. The coupled Heisenberg equations of motion involving real and imaginary parts of the quadrature operators are established. The occurrence of amplitude squeezing effects in both the quadratures of the radiation field in the fundamental mode is investigated and found to be dependent on the selective phase values of the field amplitude. The photon statistics of the pump mode in this process have also been investigated and found to be sub-Poissonian in nature. It is shown that for particular phase values the amplitude squeezing and sub-Poissonian photon statistics of light occur simultaneously. It is observed that there is no possibility to produce squeezed light in the harmonic mode up to first-order interaction in gt. Further, it is found that the normal squeezing in the harmonic mode directly depends upon the amplitude-cubed squeezing of the initial pump field to the case of second-order interaction in gt. This gives a method of converting higher-order (amplitude-cubed) squeezing of the fundamental mode into normal squeezing of the harmonic mode and vice versa.
Discipline
- 42.65.Ky: Frequency conversion; harmonic generation, including higher-order harmonic generation(see also 42.79.Nv Optical frequency converters)
- 42.50.Dv: Quantum state engineering and measurements(see also 03.65.Ud Entanglement and quantum nonlocality, e.g., EPR paradox, Bells inequalities, GHZ states, etc.)
- 42.50.Ar: Photon statistics and coherence theory
Journal
Year
Volume
Issue
Pages
1126-1131
Physical description
Dates
published
2014-05
received
2013-05-20
(unknown)
2014-01-09
Contributors
author
- Department of Physics, R.S. More College, Vinoba Bhave University, Hazaribag, Govindpur, India
author
- Department of Physics, Sindri College, Vinoba Bhave University, Hazaribag, Sindri, India
author
- Department of Physics, P.K.R.M. College, Vinoba Bhave University, Dhanbad, India
References
- [1] D.F. Walls, Nature 306, 141 (1983), doi: 10.1038/306141a0
- [1a] R. Loudon, P.L. Knight, J. Mod. Opt. 34, 709 (1987), doi: 10.1080/09500348714550721
- [1b] M.C. Teich, B.E.A. Saleh, Quant. Opt. 1, 153 (1989), doi: 10.1088/0954-8998/1/2/006
- [2] J. Perina, Quantum Statistics of Linear and Nonlinear Optical Phenomena, Kluwer, Dordrecht 1999, Ch. 9 and 10
- [2a] L. Mandel, Phys. Scr. T 12, 34 (1986), doi: 10.1088/0031-8949/1986/T12/005
- [2b] V.V. Dodonov, J. Opt. B: Quant. Semiclass. Opt. 4, R1 (2002), doi: 10.1088/1464-4266/4/1/201
- [3] B.E.A. Saleh, M.C. Teich, Phys. Rev. Lett. 58, 2656 (1987), doi: 10.1103/PhysRevLett.58.2656
- [4] Special issues devoted to squeezed states: K. Wódkiewicz, J. Mod. Opt. 34, 941 (1987), doi: 10.1080/09500348714550851
- [4a] H.J. Kimble, D.F. Walls, J. Opt. Soc. Am. B 4, 1450 (1987), doi: 10.1364/JOSAB.4.001449
- [5] H.P. Yuen, J.H. Shapiro, IEEE Trans. Inf. Theory 24, 657 (1978), doi: 10.1109/TIT.1978.1055958
- [6] C.H. Bennett, G. Brassard, N.D. Mermin, Phys. Rev. Lett. 68, 557 (1992), doi: 10.1103/PhysRevLett.68.557
- [6a] J. Kempe, Phys. Rev. A 60, 910 (1999), doi: 10.1103/PhysRevA.60.910
- [7] J. Peřina, V. Peřinová, J. Kodousek, Opt. Commun. 49, 210 (1984), doi: 10.1016/0030-4018(84)90266-9
- [8] S. Kielich, R. Tanas, R. Zawodny, J. Opt. Soc. Am. B 4, 1627 (1987), doi: 10.1364/JOSAB.4.001627
- [9] J. Peřina, V. Peřinova, C. Sibilia, M. Bertolotti, Opt. Commun. 49, 285 (1984), doi: 10.1016/0030-4018(84)90193-7
- [10] M.S.K. Razmi, J.H. Eberly, Opt. Commun. 76, 265 (1990), doi: 10.1016/0030-4018(90)90297-7
- [11] D.K. Giri, P.S. Gupta, J. Opt. B: Quant. Semiclass. Opt. 6, 91 (2004), doi: 10.1088/1464-4266/6/1/015
- [11a] Opt. Commun. 221, 135 (2003), doi: 10.1016/S0030-4018(03)01464-0
- [12] J. Perina, J. Krepelka, J. Mod. Opt. 38, 2137 (1991), doi: 10.1080/09500349114552231
- [13] A. Kumar, P.S. Gupta, Quant. Semiclass. Opt. 7, 835 (1995), doi: 10.1088/1355-5111/7/5/005
- [14] A. Kumar, P.S. Gupta, Quant. Semiclass. Opt. 8, 1053 (1996), doi: 10.1088/1355-5111/8/5/010
- [15] C.K. Hong, L. Mandel, Phys. Rev. Lett. 54, 323 (1985), doi: 10.1103/PhysRevLett.54.323
- [15a] C.K. Hong, L. Mandel, Phys. Rev. A 32, 974 (1985), doi: 10.1103/PhysRevA.32.974
- [16] M. Hillery, Opt. Commun. 62, 135 (1987), doi: 10.1016/0030-4018(87)90097-6
- [16a] M. Hillery, Phys. Rev. A 36, 3796 (1987), doi: 10.1103/PhysRevA.36.3796
- [16b] M. Hillery, Phys. Rev. A 45, 4944 (1992), doi: 10.1103/PhysRevA.45.4944
- [17] L. Mandel, Opt. Commun. 42, 437 (1982), doi: 10.1016/0030-4018(82)90283-8
- [18] Y. Kim, T.H. Yoon, Opt. Commun. 212, 107 (2002), doi: 10.1016/S0030-4018(02)01981-8
- [19] H. Prakash, D.K. Mishra, J. Phys. B, At. Mol. Opt. Phys. 39, 2291 (2006), doi: 10.1088/0953-4075/39/9/014
- [19a] H. Prakash, D.K. Mishra, Opt. Commun. 283, 3284 (2010), doi: 10.1016/j.optcom.2010.04.007
- [20] R. Tanas, Phys. Lett. A 141, 217 (1989), doi: 10.1016/0375-9601(89)90471-4
- [21] R. Tanas, A. Miranowicz, S. Kielich, Phys. Rev. A 43, 4014 (1991), doi: 10.1103/PhysRevA.43.4014
- [22] Y.-B. Zhan, Phys. Lett. A 160, 498 (1991), doi: 10.1016/0375-9601(91)91055-I
- [23] L. Mandel, Opt. Lett. 4, 205 (1979), doi: 10.1364/OL.4.000205
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n510kz