Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 5 | 1099-1107

Article title

Soliton Solution and Conservation Law of Gear-Grimshaw Model for Shallow Water Waves

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper is going to obtain the soliton solution of the Gear-Grimshaw model that describes the dynamics of two-layered shallow water waves in oceans and rivers. The topological 1-soliton solution will be obtained by the ansatz method. There are several constraint conditions that will be taken care of. This will be followed by the model with power law nonlinearity. Subsequently, the conservation laws for this model will be derived by the aid of multiplier approach from the Lie symmetry analysis. Finally, the F-expansion method will extract a few more interesting solutions to the model.

Keywords

EN

Year

Volume

125

Issue

5

Pages

1099-1107

Physical description

Dates

published
2014-05
received
2013-12-04

Contributors

author
  • Radiation Physics Laboratory, Department of Physics, Faculty of Sciences, Badji Mokhtar University P.O. Box 12, 23000 Annaba, Algeria
author
  • School of Mathematics, Centre for Differential Equations Continuum Mechanics and Applications University of the Witwatersrand, Johannesburg, Wits 2050, South Africa
author
  • Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
  • Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
author
  • Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
  • Department of Mathematical Sciences, Delaware State University, Dover, DE 19901-2277, USA

References

  • [1] A.H. Bhrawy, M.A. Abdelkawy, A. Biswas, Commun Nonlin. Sci. Num. Simul. 18, 915 (2013), doi: 10.1016/j.cnsns.2012.08.034
  • [2] A.H. Bhrawy, M.A. Abdelkawy, S. Kumar, S. Johnson, A. Biswas, Indian J. Phys. 87, 455 (2013), doi: 10.1007/s12648-013-0248-x
  • [3] A.H. Bhrawy, M.A. Abdelkawy, S. Kumar, A. Biswas, Romanian J. Phys. 58, 729 (2013)
  • [4] E. Bisognin, V. Bisognin, M. Sepulveda, O. Vera, J. Comput. Appl. Math. 220, 290 (2008), doi: 10.1016/j.cam.2007.08.008
  • [5] A. Biswas, M.S. Ismail, Appl. Math. Comput. 216, 3662 (2010), doi: 10.1016/j.amc.2010.05.017
  • [6] A. Biswas, E.V. Krishnan, P. Suarez, A.H. Kara, S. Kumar, Indian J. Phys. 87, 169 (2013), doi: 10.1007/s12648-012-0208-x
  • [7] U. Göktas, W. Hereman, Physica D 123, 425 (1998), doi: 10.1016/S0167-2789(98)00140-7
  • [8] Y. Guo, Y. Wang, Appl. Math. Comput. 217, 8080 (2011), doi: 10.1016/j.amc.2011.03.007
  • [9] A.J.M. Jawad, S. Johnson, A. Yildirim, S. Kumar, A. Biswas, Indian J. Phys. 87, 281 (2013), doi: 10.1007/s12648-012-0218-8
  • [10] A.H. Kara, J. Nonlin. Math. Phys. 16, 149 (2009), doi: 10.1142/S1402925109000376
  • [11] Y.S. Kivshar, B.A. Malomed, Wave Motion 11, 261 (1989), doi: 10.1016/0165-2125(89)90005-X
  • [12] Y. Kivshar, B.A. Malomed, Rev. Mod. Phys. 61, 763 (1989), doi: 10.1103/RevModPhys.61.763
  • [13] H. Triki, M.S. Ismail, Appl. Math. Comput. 217, 1540 (2010), doi: 10.1016/j.amc.2009.06.047
  • [14] A.M. Wazwaz, Appl. Math. Comput. 184, 1002 (2007), doi: 10.1016/j.amc.2006.07.002
  • [15] H. Zhang, Commun. Nonlin. Sci. Num. Simul. 12, 1120 (2009), doi: 10.1016/j.cnsns.2006.01.011

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv125n506kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.