Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 4A | A-159-A-163

Article title

Distribution of Random Pulses Forcing a Damped Oscillator Determined in a Finite Time Interval

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Solving a stochastic problem for systems subjected to random series of pulses is, in the present case, aimed at determining of an approximate distribution of amplitudes of random pulses forcing vibrations of an oscillator with damping. The applied model of investigations indicated the source of difficulties connected with interpretation of the obtained results. Another issue discussed in the paper is how a change of the damping coefficient b of the system may result in a decrease of the difference between the actual distribution of random pulses and that determined from the waveform.

Keywords

EN

Contributors

author
  • AGH University of Science and Technology, Faculty of Mechanic Engineering and Robotics, Department of Mechanics and Vibroacoustics, Al. A. Mickiewicza 30, 30-059 Krakow, Poland

References

  • [1] M. Sibielak, Mechanical Systems and Signal Processing 36, 118 (2013)
  • [2] W. Raczka, M. Sibielak, and H. Bah, Proc. 15th Int. DAAAM Symposium: intelligent manufacturing & automation: globalisation - technology - men - nature, Ed.: B. Katalinic, DAAAM International, Vienna 2004
  • [3] J. Konieczny, J. Kowal, W. Raczka, M. Sibielak, J. Low Frequency Noise, Vibration, Active Control 32, 81 (2013), doi:10.1260/0263-0923.32.1-2.81
  • [4] M. Sibielak, J. Konieczny, J. Kowal, W. Raczka, D. Marszalik, J. Low Frequency Noise, Vibration, Active Control 32, 99 (2013), doi:10.1260/0263-0923.32.1-2.99
  • [5] W. Raczka, M. Sibielak, J. Kowal, J. Konieczny, J. Low Frequency Noise, Vibration, Active Control 32, 117 (2013), doi:10.1260/0263-0923.32.1-2.117
  • [6] E. Rusiński, P. Moczko, D. Pietrusiak, G. Przybyłek, Journal of Mechanical Engineering 59, 556 (2013), doi:10.5545/sv-jme.2012.940
  • [7] J. Czmochowski, P. Moczko, P. Odyjas, D. Pietrusiak, Maintenance and Reliability 16, 305 (2014)
  • [8] M. Kozupa, J. Wiciak, Acta Phys. Pol. A 118, 95 (2010), doi: Acta Phys. Pol. A 118, 95 (2010)
  • [9] A. Brański, Acoustic Waves, ch. 18, InTech, Rijeka, Chorwacja 2011, pp. 397
  • [10] M. S. Kozień, Acta Phys. Pol. 123, 1029 (2013), doi:10.12693/APhysPolA.123.1029
  • [11] M. Wiciak, Acta Phys. Pol. A 121, A-142 (2012)
  • [12] M. Jabłoński, A. Ozga, Acta Phys. Pol. 118, 174 (2010)
  • [13] M. Jabłoński, A. Ozga, Mechanics 29, 163 (2010)
  • [14] M. Jabłoński, A. Ozga, T. Korbiel, P. Pawlik, Acta Phys. Pol. 119, 997 (2011)
  • [15] M. Jabłoński, A. Ozga, Acta Phys. Pol. 121, A-174 (2012)
  • [16] M. Jabłoński, A. Ozga, Arch. Acoust. 34, 601 (2009)
  • [17] M. Jabłoński, A. Ozga Distribution of random pulses acting on a vibrating system as a function of its motion, AGH University of Science and Technology Press, Kraków 2013
  • [18] A. Ozga,Acta Phys. Pol. 123, 1034 (2013), doi:10.12693/APhysPolA.123.1034
  • [19] W. Regel, Mathematical Statistics in MATLAB, MIKOM, Warszawa 2004, (in Polish)

Document Type

Publication order reference

YADDA identifier

bwmeta1.element.bwnjournal-article-appv125n4a31kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.