Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 4A | A-135-A-143

Article title

The Low Frequency Approximation of the Sound Radiation Power of Two Vibrating Circular Pistons Embedded in Two Different Rigid Planes of a Three-wall Corner

Content

Title variants

Languages of publication

EN

Abstracts

EN
The problem of sound radiation by a system consisting of two vibrating circular pistons embedded in two of three different planes perpendicular to one another forming a three-wall corner is considered. The earlier published results dealing with the sound radiation by sources vibrating in a three-wall corner are the basis of analysis. According to the earlier studies, the exact formulae for acoustic power of radiation of two circular pistons are used. The formulae are expressed as double Fourier integrals. The active and reactive, self and mutual, components are separated from them as well as the corresponding expressions of the acoustic power of mirror images of the piston sources. The acoustic power of the two sources are expressed in the form of the Rayleigh formulae whereas, in the case of the mirror images, it is expressed in the form of the single series expansion containing spherical Bessel and Neumann functions. In the case of the mutual acoustic power of the sources, approximate formulae are presented for low frequencies. On the basis of the results obtained, the corresponding formulae valid for a two-wall corner are presented as the limiting transitions. All the results presented can be useful, e.g. in designing the room acoustics and outdoor system everywhere the free field conditions are disturbed by the acoustic waves reflected at rigid vertical walls for the wavelengths being considerably shorter than the geometric sizes of the walls.

Keywords

Year

Volume

125

Issue

4A

Pages

A-135-A-143

Physical description

Dates

published
2014-04

Contributors

author
  • Department of Mechatronics and Control Science, Faculty of Mathematics and Natural Sciences University of Rzeszów, Prof. St. Pigonia 1, 35-310 Rzeszów, Poland
author
  • Department of Mechatronics and Control Science, Faculty of Mathematics and Natural Sciences University of Rzeszów, Prof. St. Pigonia 1, 35-310 Rzeszów, Poland
author
  • Department of Mechatronics and Control Science, Faculty of Mathematics and Natural Sciences University of Rzeszów, Prof. St. Pigonia 1, 35-310 Rzeszów, Poland

References

  • [1] S.M. Hasheminejad, M.A. Alibakhshi, Arch. Acoust. 31, 243 (2006)
  • [2] F.G. Leppington, 10.1093/qjmam/20.1.107. Q. J. Mech. Appl. Math. 20, 107 (1967), doi:10.1093/qjmam/20.1.107. Q. J. Mech. Appl. Math. 20, 107 (1967)
  • [3] Y.S. Lee, H.J. Eom, Acta Acust. united Ac. 98, 365 (2012), doi:10.3813/AAA.91852
  • [4] H. Levine, F.G. Leppington, J. Sound. Vib. 121, 269 (1988), doi:10.1016/S0022-460X(88)80029-4
  • [5] N. Hashimoto, Appl. Acoust. 62, 429 (2001), doi:10.1016/S0003-682X(00)00025-6
  • [6] J.P. Arenas, Int. J. Occup. Saf. Ergo. 15, 401 (2009)
  • [7] J.P. Arenas, M.J. Crocker, Int. J. Acoust. Vib. 7, 217 (2002)
  • [8] Ł. Gorazd, J. Jurkiewicz, S. Raab, A. Snakowska, Acta Phys. Pol. A 123, 1085 (2013, doi:10.12693/APhysPolA.123.1085
  • [9] A. Snakowska, J. Jurkiewicz, Acta Acust. united Ac. 96, 416 (2010, doi:10.3813/AAA.918294
  • [10] T. Mellow, J. Acoust. Soc. Am. 120, 90 (2006, doi:10.1121/1.2206513
  • [11] J.P. Arenas, J. Comput. Acoust. 16(3), 321 (2008), doi:10.1142/S0218396X08003671
  • [12] L. Leniowska, Arch. Acoust. 33(4), 531 (2008)
  • [13] R. Trojanowski, J. Wiciak, Acta Phys. Pol. A 121, A148 (2012)
  • [14] M. Pawełczyk, Arch. Acoust. 33, 509 (2008)
  • [15] W.M. Zawieska, Int. J. Occup. Saf. Ergo. 13, 381 (2007)
  • [16] A. Brański, S. Szela, Arch. Acoust. 33, 521 (2008)
  • [17] S.M. Hasheminejad, M. Azarpeyvand, Shock Vib. 11, 625 (2004)
  • [18] W.J. Rdzanek, W.P. Rdzanek, Arch. Acoust. 31, 99 (2006)
  • [19] W.P. Rdzanek, K. Szemela, Arch. Acoust. 32, 339 (2007)
  • [20] W.P. Rdzanek, W.J. Rdzanek, K. Szemela, Arch. Acoust. 34, 75 (2009)
  • [21] W.P. Rdzanek, K. Szemela, D. Pieczonka, Arch. Acoust. 36, 121 (2011), doi:10.2478/v10168-011-0009-9
  • [22] K. Szemela, W.P. Rdzanek, D. Pieczonka, Acta Phys. Pol. A 119, 1050 (2011)
  • [23] I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 7 ed., 2007
  • [24] B.G. Korenev, Bessel Functions and Their Applications, Analytical Methods and Special Functions, Taylor and Francis, London 2002
  • [25] P.M. Morse, H. Feshbach, Methods of Theoretical Physics, Vol. 1 and 2, McGraw-Hill Book Company, New York 1954
  • [26] R.L. Pritchard, J. Acoust. Soc. Am. 32, 730 (1960)
  • [27] G.N. Watson, A Treatise On The Theory Of Bessel Functions, Cambridge University Press, Cambridge 1944

Document Type

Publication order reference

YADDA identifier

bwmeta1.element.bwnjournal-article-appv125n4a27kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.