PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 4A | A-77-A-83
Article title

Acoustic Eigenanalysis with Radial Basis Functions

Content
Title variants
Languages of publication
EN
Abstracts
EN
The paper concerns the eigenanalysis of acoustic cavities with the use of radial basis functions (RBF). The Kansa collocation method was used for determination of the natural frequencies and eigenvectors of 1D, 2D and 3D acoustic fields. Due to validation analysis of the proposed method, in simple examples like 1D, 2D rectangle and 3D rectangular parallelepiped all calculated eigenferquency and eigenvectors were compared with exact (analytical) results. All results indicate that using of multiquadric radial basis functions provide a results with very high accuracy in comparison to analytical results. In the paper a new method for determining the shape parameter of the multiquadric radial basis functions is described.
Keywords
EN
Year
Volume
125
Issue
4A
Pages
A-77-A-83
Physical description
Dates
published
2014-04
References
  • [1] T. Belystcho, Y. Lu, L. Gu, Int. J. Numer. Meth. Engng. 37, 229 (1994), doi:10.1002/nme.1620370205
  • [2] W.K. Liu, S. Jun, Y.F. Zhang, Int. J. Numer. Meth. Engng. 20, 1081 (1995), doi:10.1002/fld.1650200824
  • [3] Y.T. Gu, G.R. Liu, Comput. Methods Appl. Mech. Engrg. 190, 5515 (2001), doi:10.1016/S0045-7825(01)00180-3
  • [4] G.R. Liu, Y.T. Gu, Int. J. Numer. Methods Engrg. 50, 937 (2001), doi:10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X
  • [5] J.G. Wang, G.R. Liu, Int. J. Numer. Methods Engrg. 54, 1623 (2002), doi:10.1002/nme.489
  • [6] Y.X. Mukherjee, S. Mukherjee, Int J. Numer. Meth. Engng. 40, 797 (1997), doi:10.1002/(SICI)1097-0207(19970315)40:5<797::AID-NME89>3.0.CO;2
  • [7] V. Sladek, J. Sladek, S.N. Atluri, R. van Keer, Comput. Mech. 25, 394 (2000), doi:10.1007/s004660050486
  • [8] G.R. Liu, Y.T. Gu, Comput. Mech. 28, 47 (2002), doi:10.1007/s00466-001-0268-9
  • [9] E.J. Kansa, Comput. Math. Appl. 19, 147 (1990), doi:10.1016/0898-1221(90)90271-K
  • [10] Y.C. Hon, M.W. Lu, W.M. Xue, Y.M. Zhu, Appl. Math. Comput. 88, 153 (1997), doi:10.1016/S0096-3003(96)00309-8
  • [11] Y.C. Hon, M.W. Lu, W.M. Xue, X. Zhou, Comput. Mech. 24, 155 (1999), doi:10.1007/s004660050448
  • [12] Y.C. Hon, X.Z. Mao, Appl. Math. Comput. 95, 37 (1998), doi:10.1016/S0096-3003(97)10060-1
  • [13] Y.C. Hon, K.F. Cheung, X.Z. Mao, E.J. Kansa, ASCE J. Hydraul. Engng. 125, 524 (1999), doi:10.1061/(ASCE)0733-9429(1999)125:5(524)
  • [14] M. Zerroukat, H. Power, C.S. Chen, Int. J. Numer. Meth. Engng. 42, 1263 (1998), doi:10.1002/(SICI)1097-0207(19980815)42:7<1263::AID-NME431>3.0.CO;2-I
  • [15] J. Perko, C.S. Chen, B. Sarler, in Moving Boundaries VI, Computational Modelling of Free and Moving Boundary Problems, WIT Press, 2001, p. 111
  • [16] P.P. Chinchapatnam, K. Djidjeli, Nair, P.B. Int. J. Comput. Math. 84 1509 (2007), doi:10.1080/00207160701308309
  • [17] Y. Duan, Y. Tan, J. Comput. Appl. Math. 196, 394 (2006), doi:10.1016/j.cam.2005.09.018
  • [18] A. Aminataei, M.M. Mazarei, Comput. Math. Appl. 56, 2887 (2008), doi:10.1016/j.camwa.2008.07.026
  • [19] P. Vu, G.E. Fasshauer, IET Science, Measurement &Technology 5, 206 (2011), doi:10.1049/iet-smt.2010.0125
  • [20] J.W. Pearson, Numer. Algor., December (2012), doi:10.1007/s11075-012-9675-6
  • [21] H. Wendland, Adv. Comput. Math. 4, 389 (1995), doi:10.1007/BF02123482
  • [22] Z. Wu, Adv. Comput. Math. 4, 283 (1995), doi:10.1007/BF03177517
  • [23] T. Gneiting, J. Multivariate Analysis 83, 493 (2002), doi:10.1006/jmva.2001.2056
  • [24] G.E. Fasshauer, Meshfree Approximation Methods With MATLAB, World Scientific, Singapore 2007
  • [25] G.E. Fasshauer, J.G. Zhang, Numer. Algor. 45, 346 (2007), doi:10.1007/s11075-007-9072-8
  • [26] http://www.salome-platform.org/
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n4a15kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.