Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 4 | 1017-1020
Article title

Electrical Behavior of Mg in Mg-Implanted 4H-SiC Layer

Title variants
Languages of publication
Because Al and B (elements of group III) in SiC are acceptors with deep energy levels and these acceptors cannot reduce the resistivity of p-type SiC very much, Mg (an element of group II) that may emit two holes into the valence band is investigated. Annealing at 1800C makes a Mg-implanted layer p-type. It is found that an Mg acceptor level in 4H-SiC is too deep to reliably determine the density and energy level of the Mg acceptor using the frequently used occupation probability, i.e., the Fermi-Dirac distribution function. Using the distribution function that accounts for the influence of the excited states of a deep-level acceptor, the density and energy level of Mg acceptors can be determined to be approximately 1 × 10^{19} cm^{-3} and 0.6 eV, respectively. These values are considered to be reliable because they agree well with the Mg implantation condition.
Physical description
  • Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa, Osaka 572-8530, Japan
  • Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa, Osaka 572-8530, Japan
  • Nagamachi Science Laboratory Co., Ltd., 1-16-1-1003 Shioe, Amagasaki, Hyogo 661-0976, Japan
  • [1] H. Matsuura, in: Advances in Condensed Matter and Materials Research, Vol. 10, Eds. H. Geelvink, S. Reynst, Nova Science, New York 2011, Ch. 7
  • [2] H. Matsuura, New J. Phys. 4, 12 (2002), doi: 10.1088/1367-2630/4/1/312
  • [3] H. Matsuura, K. Sugiyama, K. Nishikawa, T. Nagata, N. Fukunaga, J. Appl. Phys. 94, 2234 (2003), doi: 10.1063/1.1589176
  • [4] H. Matsuura, J. Appl. Phys. 95, 4213 (2004), doi: 10.1063/1.1655683
  • [5] H. Matsuura, Phys. Rev. B 74, 245216 (2006), doi: 10.1103/PhysRevB.74.245216
  • [6] H. Matsuura, M. Komeda, S. Kagamihara, H. Iwata, R. Ishihara, T. Hatakeyama, T. Watanabe, K. Kojima, T. Shinohe, K. Arai, J. Appl. Phys. 96, 2708 (2004), doi: 10.1063/1.1775298
  • [7] O. Madelung, Semiconductors: Data Handbook, 3rd ed., Springer, Berlin 2004, p. 68
  • [8] M. Ikeda, H. Matsunami, T. Tanaka, Phys. Rev. B 22, 2842 (1980), doi: 10.1103/PhysRevB.22.2842
  • [9] I. Nashiyama, in: Properties of Silicon Carbide, Ed. G.L. Harris, INSPEC, London 1995, p. 87
  • [10] S. Kagamihara, H. Matsuura, T. Hatakeyama, T. Watanabe, M. Kushibe, T. Shinohe, K. Arai, J. Appl. Phys. 96, 5601 (2004), doi: 10.1063/1.1798399
  • [11] S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd ed., Wiley, New York 2007, p. 23 and p. 35
  • [12] Y.P. Maslakovets, E.N. Mokhov, Y.A. Vodakov, G.A. Lomakina, Sov. Phys. Solid State 10, 634 (1968)
  • [13] J.P. Biersack, L. Haggmark, Nucl. Instrum. Methods 174, 257 (1980), doi: 10.1016/0029-554X(80)90440-1
  • [14] G. Pensl, F. Schmid, F. Ciobanu, M. Laube, S.A. Reshanov, N. Schulze, K. Semmelroth, H. Nagasawa, A. Schöner, G. Wagner, Mater. Sci. Forum 433-436, 365 (2003)
  • [15] F. Schmid, M. Krieger, M. Laube, G. Pensl, G. Wagner, in: Silicon Carbide, Eds. W.J. Choyke, H. Matsunami, G. Pensl, Springer, Berlin 2004, p. 517
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.