PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 4 | 997-1002
Article title

Kelvin Force Microscopy Characterization of Corona Charged Dielectric Surfaces

Content
Title variants
Languages of publication
EN
Abstracts
EN
Ionic diffusion of (H_2O)_{n}^{+} and CO¯_3 on SiO_2 surfaces has been quantified using Kelvin force microscopy measurement of ion distribution change after small spot corona charge. For both positive and negative ionic species, the concentration profiles versus time follow the two-dimensional surface diffusion enabling a determination of corresponding diffusion coefficients. On a thermally grown SiO_2 surface, diffusion coefficients of (H_2O)_{n}^{+} and CO¯_3 ions were 2.2 × 10^{-11} cm^2/s and 4.8 × 10^{-12} cm^2/s, respectively. On a chemically cleaned SiO_2 surface, diffusion coefficients of (H_2O)_{n}^{+} and CO¯_3 ions were 7.5 × 10^{-9} cm^2/s and 2.4 × 10^{-9} cm^2/s, respectively. Mathematical analysis of the surface potential decay yields an additional parameter - capacitance equivalent thickness.
Keywords
Contributors
author
  • Semilab SDI, 10770N. 46th St., Ste E700, Tampa, FL, USA
author
  • Semilab SDI, 10770N. 46th St., Ste E700, Tampa, FL, USA
author
  • University of South Florida, 4202 East Fowler Avenue, Tampa FL, USA
References
  • [1] D.K. Schroder, Meas. Sci. Technol. 12, R16 (2001), doi: 10.1088/0957-0233/12/3/202
  • [2] D.K. Schroder, Mater. Sci. Eng. B 91-92, 196 (2002), doi: 10.1016/S0921-5107(01)00993-X
  • [3] P. Edelman, A. Savtchouk, M. Wilson, J. D'Amico, J.N. Kochey, D. Marinskiy, J. Lagowski, Europ. Phys. J. Appl. Phys. 27, 495 (2004), doi: 10.1051/epjap:2004119
  • [4] M. Wilson, D. Marinskiy, A. Byelyayev, J. D'Amico, A. Findlay, L. Jastrzebski, J. Lagowski, ECS Trans. 3, 3 (2006)
  • [5] R. Williams, M.H. Woods, J. Appl. Phys. 44, 1026 (1973), doi: 10.1063/1.1662300
  • [6] R.B. Comizzoli, J. Electrochem. Soc. 134, 424 (1987), doi: 10.1149/1.2100472
  • [7] P. Edelman, D. Marinskiy, C. Almeida, J.N. Kochey, A. Byelyayev, M. Wilson, A. Savtchouk, J. D'Amico, A. Findlay, L. Jastrzebski, J. Lagowski, Mater. Sci. Semicond. Proc. 9, 252 (2006), doi: 10.1016/j.mssp.2006.01.042
  • [8] M.L. Green, M.-Y. Ho, B. Busch, G.D. Wilk, T. Sorsch, T. Conard, B. Brijs, W. Vandervorst, P.I. Räisänen, D. Muller, M. Bude, J. Grazul, J. Appl. Phys. 92, 7168 (2002), doi: 10.1063/1.1522811
  • [9] W. Tsai, R.J. Carter, H. Nohira, M. Caymax, T. Conard, V. Cosnier, S. DeGendt, M. Heyns, J. Petry, O. Richard, W. Vandervorst, E. Young, C. Zhao, J. Maes, M. Tuominen, W.H. Schulte, E. Garfunkel, T. Gustafsson, Microelectron. Eng. 65, 259 (2003), doi: 10.1016/S0167-9317(02)00898-5
  • [10] M.M. Shahin, J. Chem. Phys. 45, 2600 (1966), doi: 10.1063/1.1727980
  • [11] M.M. Shahin, Appl. Opt. 8, 106 (1969)
  • [12] D.K. Schroder, Semiconductor Material and Device Characterization, 2nd ed., Wiley, New York 1998, p. 481
  • [13] J.A. Voorthuyzen, K. Keskin, P. Bergveld, Surf. Sci. 187, 201 (1987), doi: 10.1016/S0039-6028(87)80132-2
  • [14] A.D. Martin, K.J. McLean, J. Appl. Phys. 48, 2950 (1977), doi: 10.1063/1.324108
  • [15] Y. Awakuni, J.H. Calderwood, J. Phys. D, Appl. Phys. 5, 1038 (1972), doi: 10.1088/0022-3727/5/5/323
  • [16] J. D'Amico, Ph.D. thesis, University of South Florida, Tampa 2000
  • [17] http://www.semilab.hu/products/si/faast-300-sl
  • [18] S.M. Sze, Physics of Semiconductor Devices, Wiley, New York 1981, Ch. 9
  • [19] S. Kadamani, A.D. Snider, 'USFKAD: An Expert System for Partial Differential Equations', Comp. Phys. Commun. 176, 62 (2007), doi: 10.1016/j.cpc.2006.09.002
  • [20] S.D. Hossain, M.F. Pas, J. Electrochem. Soc. 140, 3604 (1993), doi: 10.1149/1.2221133
  • [21] K.T. Lee, S. Raghavan, Electrochem. Solid-State Lett. 2, 172 (1999), doi: 10.1149/1.1390773
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n461kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.