Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 4 | 994-996

Article title

Observation and Control of Interfacial Defects in ZnO/ZnSe Coaxial Nanowires

Content

Title variants

Languages of publication

EN

Abstracts

EN
ZnO/ZnSe coaxial nanowires with different ZnO core diameters were synthesized by using a two-step chemical vapor deposition. The scanning electron microscopy images demonstrated that the coaxial nanowires with small ZnO core diameter had the smoother surface than that with large ZnO core diameter. A coherent ZnSe layer with wurtzite structure was observed in the nanowire interface between the ZnO core and the ZnSe shell by high resolution transmission electron microscopy. This coherent layer is beneficial to reduce the defect density and improve the crystal quality by suppressing the phase transition. It was found that the coherent thickness was significantly related to the ZnO core diameter. For the nanowire with large ZnO core, a thin critical thickness of 2 - 3 nm was obtained. As a result, a layer of zinc blende ZnSe appeared outside the nanowire, and a lot of defects existed in the interface between the ZnSe layers with different phase structures. For the nanowire with small ZnO core, however, the critical thickness increased and a coherent coaxial structure was observed with the same lattice spacing in the ZnO core and the ZnSe shell. To obtain defect-free coaxial nanowire, an optimal structure was also proposed by theoretical calculation.

Keywords

Contributors

author
  • Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University Ξamen 361005, P.R. China
author
  • Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University Ξamen 361005, P.R. China
author
  • Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University Ξamen 361005, P.R. China
author
  • Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University Ξamen 361005, P.R. China
author
  • Fujian Key Laboratory of Semiconductor Materials and Applications, Department of Physics, Xiamen University Ξamen 361005, P.R. China

References

  • [1] K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, F. Willaime, Science 653, 278 (1997), doi: 10.1143/JJAP.38.L755
  • [2] Y. Zhang, K. Suenaga, C. Colliex, S. Iijima, Science 281, 973 (1998), doi: 10.1126/science.281.5379.973
  • [3] Z.M. Wu, Y. Zhang, J.J. Zheng, X.G. Lin, X.H. Chen, B. Huang, H.Q. Wang, K. Huang, S.P. Li, J.Y. Kang, J. Mater. Chem. 21, 6020 (2011), doi: 10.1039/c0jm03971c
  • [4] A.I. Hochbaum, P.D. Yang, Chem. Rev. 110, 527 (2010), doi: 10.1021/cr900075v
  • [5] B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, T. Fukui, Nano Lett. 9, 112 (2009), doi: 10.1021/nl802636b
  • [6] O. Hayden, A.B. Greytak, D.C. Bell, Adv. Mater. 17, 701 (2005), doi: 10.1002/adma.200401235
  • [7] W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Adv. Mater. 16, 1009 (2004), doi: 10.1002/adma.200306659
  • [8] J.J. Zheng, Z.M. Wu, W.H. Yang, S.P. Li, J.Y. Kang, J. Mater. Res. 25, 1272 (2010), doi: 10.1557/jmr.2010.016
  • [9] Y. Zhang, J. Pern, A. Mascarenhas, W.L. Zhou, SPIE Newsroom 11, 1388 (2008), doi: 10.1117/2.1200811.1388
  • [10] K. Wang, J.J. Chen, W.L. Zhou, Y. Zhang, Y.F. Yan, J. Pern, A. Mascarenhas, Adv. Mater. 20, 3248 (2008), doi: 10.1002/adma.200800145
  • [11] H.Y. Chao, J.H. Cheng, J.Y. Lu, Y.H. Chang, C.L. Cheng, Y.F. Chen, Superlatt. Microstruct. 47, 160 (2010), doi: 10.1063/1.3430604
  • [12] E. Janik, A. Wachnicka, E. Guziewicz, M. Godlewski, S. Kret, W. Zaleszczyk, E. Dynowska, A. Presz, G. Karczewski, T. Wojtowicz, Nanotechnology 21, 015302 (2010), doi: 10.1088/0957-4484/21/1/015302
  • [13] K. Wang, J.J. Chen, Z.M. Zeng, J. Tarr, W.L. Zhou, Y. Zhang, Y.F. Yan, C.S. Jiang, J. Pern, A. Mascarenhas, Appl. Phys. Lett. 96, 123105 (2010), doi: 10.1063/1.3367706
  • [14] M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Nature 415, 617 (2002), doi: 10.1038/415617a
  • [15] L.J. Lauhon, M.S. Gudiksen, C.M. Lieber, Math. Phys. Eng. Sci. 362, 1247 (2004), doi: 10.1098/rsta.2004.1377
  • [16] Y.W. Heo, C. Abernathy, K. Pruessner, W. Sigmund, D.P. Norton, J. Appl. Phys. 96, 3424 (2004), doi: 10.1063/1.1774257
  • [17] L. Pan, K.K. Lew, J.M. Redwing, E.C. Dickey, Nano Lett. 5, 1081 (2005), doi: 10.1021/nl050605z
  • [18] J. Hsueh, Cryst. Growth 302, 258 (2003), doi: 10.1016/S0022-0248(03)01563-X
  • [19] S. Raychaudhuri, E.T. Yu, Appl. Phys. Lett. 99, 114308 (2006), doi: 10.1063/1.2202697
  • [20] E.T. Trammell, X. Zhang, Y.L. Li, L.Q. Chen, E.C. Dickey, J. Cryst. Growth 310, 3084 (2008), doi: 10.1016/j.jcrysgro.2008.02.037
  • [21] Y.P. Wu, X.H. Zhang, F.C. Xu, L.S. Zheng, J.Y. Kang, Nanotechnology 20, 325709 (2009), doi: 10.1088/0957-4484/20/32/325709

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv125n460kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.