Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
High-resolution photoinduced transient spectroscopy has been applied to investigating the effect of the 1 MeV neutron fluence on the electronic properties of radiation defects in Czochralski grown silicon in magnetic field. A new approach to the analysis of the photocurrent relaxation waveforms as a function of time and temperature has been presented. It is based on using a two-dimensional numerical procedure with implementation of the inverse Laplace transformation for creating images of the sharp spectral fringes depicting the temperature dependences of the thermal emission rate for detected defect centers. In the material irradiated with the fluence of 3×10^{14} cm^{-2}, the dominant traps with activation energies of 75 meV and 545 meV are tentatively identified with an aggregate of three Si interstitials and the trivacancy, respectively. In the material irradiated with the fluence by the order of magnitude higher, the activation energies of the main traps are found to be 115, 350, 505, 545, and 590 meV. These traps are tentatively attributed to an aggregate of four Si interstitials, as well as to vacancy related centers such as V_3 (2-/-), V_2O (-/0), V_3 (-/0) and V_4 (-/0), respectively.
Discipline
- 61.80.-x: Physical radiation effects, radiation damage(for photochemical reactions, see 82.50.-m; for effects of ionizing radiation on biological systems, see 87.53.-j)
- 61.72.-y: Defects and impurities in crystals; microstructure(for radiation induced defects, see 61.80.-x; for defects in surfaces, interfaces, and thin films, see 68.35.Dv and 68.55.Ln; see also 85.40.Ry Impurity doping, diffusion, and ion implantation technology; for effects of crystal defects and doping on superconducting transition temperature, see 74.62.Dh)
- 71.55.-i: Impurity and defect levels
Journal
Year
Volume
Issue
Pages
976-981
Physical description
Dates
published
2014-04
Contributors
author
- Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warszawa, Poland
author
- Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warszawa, Poland
author
- Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warszawa, Poland
References
- [1] P.F. Ermolov, D.E. Karmanov, A.K. Leflat, V.M. Manankov, M, M. Merkin, E.K. Shabalina, Semiconductors 36, 1114 (2002), doi: 10.1134/1.1513854
- [2] R.M. Fleming, C.H. Seager, D.V. Lang, P.J. Cooper, E. Bielejec, J.M. Campbell, J. Appl. Phys. 102, 043711 (2007), doi: 10.1063/1.2769783
- [3] G. Davis, S. Hayama, L. Murin, R. Krause-Rehberg, V. Bondarenko, A. Sengupta, C. Davia, A. Karpenko, Phys. Rev. B 73, 165202 (2006), doi: 10.1103/PhysRevB.73.165202
- [4] P. Kamiński, R. Kozłowski, E. Nossarzewska-Orłowska, Nucl. Instrum. Methods Phys. Res. B 186, 152 (2002), doi: 10.1016/S0168-583X(01)00889-8
- [5] I. Pintilie, E. Fretwurst, G. Lindström, Appl. Phys. Lett. 92, 024101 (2008), doi: 10.1063/1.2832646
- [6] D. Pierreux, A. Stesmans, Phys. Rev. B 71, 115204 (2005), doi: 10.1103/PhysRevB.71.115204
- [7] T. Mchedlidze, M. Suezawa, Phys. Rev. B 70, 205203 (2004), doi: 10.1103/PhysRevB.70.205203
- [8] P. Kamiński, R. Kozłowski, Mater. Sci. Eng. B 91-92, 398 (2002), doi: 10.1016/S0921-5107(01)01030-3
- [9] M. Pawłowski, P. Kamiński, R. Kozłowski, S. Jankowski, M. Wierzbowski, Metrol. Measur. Syst. XII/2, 207 (2005)
- [10] S.W. Provencher, Comput. Phys. Commun. 27, 213 (1982), doi: 10.1016/0010-4655(82)90173-4
- [11] V.V. Emtsev, G.A. Oganesyan, K. Schmalz, Appl. Phys. Lett. 68, 2375 (1996), doi: 10.1063/1.116138
- [12] C.P. Ewels, R. Jones, S. Öberg, J. Miro, P. Deák, Phys. Rev. Lett. 77, 865 (1996), doi: 10.1103/PhysRevLett.77.865
- [13] T. Hallberg, J.L. Lindström, Appl. Phys. Lett. 68, 3458 (1996), doi: 10.1063/1.115792
- [14] R. Kozłowski, P. Kamiński, E. Nossarzewska-Orłowska, Nucl. Instrum. Methods Phys. Res. A 476, 639 (2002), doi: 10.1016/S0168-9002(01)01652-7
- [15] B.J. Coomer, J.P. Goss, R. Jones, S. Öberg, P.R. Briddon, J. Phys., Condens. Matter 13, L1 (2001), doi: 10.1088/0953-8984/13/1/101
- [16] G. Alfieri, E.V. Monakhov, B.S. Avset, B.G. Svensson, Phys. Rev. B 68, 233202 (2003), doi: 10.1103/PhysRevB.68.233202
- [17] V.P. Markevich, A.R. Peaker, S.B. Lastovskii, L.I. Murin, J. Coutinho, V.J.B. Torres, P.R. Briddon, L. Dobaczewski, E.V. Monakhov, B.G. Svensson, Phys. Rev. B 80, 235207 (2009), doi: 10.1103/PhysRevB.80.235207
- [18] L. Vines, E.V. Monakhov, Yu. Kuznetsov, R. Kozłowski, P. Kaminski, B.G. Svensson, Phys. Rev. B 78, 085205 (2008), doi: 10.1103/PhysRevB.78.085205
- [19] J.L. Hastings, S.K. Estreicher, P.A. Fedders, Phys. Rev. B 56, 10215 (1997), doi: 10.1103/PhysRevB.56.10215
- [20] G, D. Watkins, Mater. Sci. Semicond. Proc. 3, 227 (2000), doi: 10.1016/S1369-8001(00)00037-8
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n456kz