PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 4 | 965-968
Article title

Development of a Storage Getter Test for Cu Contaminations in Silicon Wafers Based on ToF-SIMS Measurements

Content
Title variants
Languages of publication
EN
Abstracts
EN
This work presents development and results of a storage getter test based on the measurement of the metal concentration by time-of-flight secondary ion mass spectroscopy applied for a low Cu contamination level. It was found that Cu atoms introduced into the as-grown sample by a drive-in anneal at high temperature diffuse out from the bulk to the surface within 7 days of storage at room temperature. Annealing steps at low temperature should decrease the time which Cu needs for the outdiffusion to the surface. However, the Cu atoms in samples subjected to outdiffusion annealing at 250C or 400C precipitated in the bulk. The investigation of the getter efficiency by the storage test in silicon samples containing oxygen precipitates has shown that in order to achieve a getter efficiency above 90%, the density of bulk microdefects should be higher than 6 × 10^9 cm^{-3}.
Keywords
Year
Volume
125
Issue
4
Pages
965-968
Physical description
Dates
published
2014-04
References
  • [1] K. Graff, in: Metal Impurities in Silicon-Device Fabrication, Springer Ser. Mater. Sci., Springer, 1995, p. 24
  • [2] R.J. Falster, G.R. Fisher, G. Ferrero, Appl. Phys. Lett. 59, 809 (1991), doi: 10.1063/1.105350
  • [3] M. Seacrist, M. Stinson, J. Libbert, R. Standley, J. Bins, in: Semiconductor Silicon/2002, Eds. H.R. Huff, L. Fabry, S. Kishino, PV 2002-2, The Electrochemical Proceeding Series, Pennington, NJ 2002, p. 638
  • [4] S. Isomae, H. Ishida, T. Itoga, K. Hozawa, J. Electrochem. Soc. 194, G343 (2002), doi: 10.1149/1.1475698
  • [5] M.B. Shabani, T. Yoshimi, H. Abe, J. Electrochem. Soc. 143, 2025 (1996), doi: 10.1149/1.1836943
  • [6] M.B. Shabani, Y. Shiina, F.G. Kirscht, Y. Shimanuki, Mater. Sci. Eng. B 102, 313 (2003), doi: 10.1016/S0921-5107(02)00739-0
  • [7] R. Hölzl, M. Blietz, L. Fabry, R. Schmolke, Electrochem. Soc. Proc. 2002-2, 608 (2002)
  • [8] H. Wong, N.W. Cheung, P.K. Chu, J. Liu, J.W. Mayer, Appl. Phys. Lett. 52, 1023 (1988), doi: 10.1063/1.99233
  • [9] Y.M. Guerguiev, R. Kögler, A. Peeva, A. Mücklich, D. Panknin, R.A. Yankov, W. Skorupa, J. Appl. Phys. 88, 5645 (2000), doi: 10.1063/1.1316054
  • [10] B.R. Hart, S.S. Dimov, R.St.C. Smart, Surf. Interface Anal. 43, 449 (2011), doi: 10.1002/sia.3447
  • [11] K. Hozawa, S. Isomae, J. Yugami, Jpn. J. Appl. Phys. 41, 5887 (2002), doi: 10.1143/JJAP.41.5887
  • [12] E.R. Weber, Impurity Precipitation, Dissolution, Gettering, and Passivation in PV Silicon, Final Technical Report, February 2002, NREL/SR-520-31528
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n453kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.