Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 4 | 932-935

Article title

Electrochemical Formation of Self-Organized Nanotubular Oxide Layers on Ti13Zr13Nb Alloy for Biomedical Applications

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this work, the anodic formation of self-organized nanotubular oxide layers on Ti13Zr13Nb implant alloy was presented. Anodic oxidation was carried out at room temperature in [1 M] (NH_4)_2SO_4 solution with 1 wt% content of NH_4F. The voltage and time of anodization was 20 V for 120 min, respectively. Under proposed conditions, the best arrangement of nanopores was observed. The physical and chemical properties of the anodized surface of the Ti13Zr13Nb alloy were characterized using grazing incidence X-ray diffraction, scanning transmission electron microscopy, and atomic force microscopy. It was found that diameter of nanopores varied from 10 to 32 nm. Mechanism of the fabrication of the unique 3D tube-shaped nanostructure of TiO_2 on the surface of the Ti13Zr13Nb alloy by electrochemical anodization, has been discussed.

Keywords

EN

Year

Volume

125

Issue

4

Pages

932-935

Physical description

Dates

published
2014-04

Contributors

author
  • Institute of Materials Science, Silesian Interdisciplinary Centre for Education and Research University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
author
  • Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland
author
  • Institute of Materials Science, Silesian Interdisciplinary Centre for Education and Research University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
author
  • Institute of Materials Science, Silesian Interdisciplinary Centre for Education and Research University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
author
  • Institute of Materials Science, Silesian Interdisciplinary Centre for Education and Research University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland

References

  • [1] Comprehensive Biomaterials, Eds. P. Ducheyne, K.E. Healy, D.W. Hutmacher, D.W. Grainger, C.J. Kirkpatrick, Elsevier Sci., Amsterdam 2011
  • [2] W. Yu, J. Qiu, L. Xu, Biomed. Mater. 4, 065012 (2009), doi: 10.1088/1748-6041/4/6/065012
  • [3] Z. Xu, Q. Li, J. Mater. Sci. Technol. 28, 865 (2012), doi: 10.1016/S1005-0302(12)60144-3
  • [4] S. Bai, D. Ding, C. Ning, R. Qin, L. Huang, Electrochem. Commun. 12, 152 (2010), doi: 10.1016/j.elecom.2009.11.011
  • [5] C.E.B. Marino, L.H. Mascaro, J. Electroanal. Chem. 568, 115 (2004), doi: 10.1016/j.jelechem.2004.01.011
  • [6] B. Łosiewicz, G. Dercz, M. Szklarska, W. Simka, M. Łężniak, A. Krząkała, A. Swinarew, Solid State Phenom. 203-204, 212 (2013), doi: 10.4028/www.scientific.net/SSP.203-204.212
  • [7] J.R. Davies, in: Handbook of Materials for Medical Devices, Ed. J.R. Davies, ASM International, Ann Arbor 2003, p. 193, doi: 10.1361/hmmd2003p001
  • [8] W. Simka, M. Mosiałek, G. Nawrat, P. Nowak, J. Żak, J. Szade, A. Winiarski, A. Maciej, L. Szyk-Warszyńska, Surf. Coat. Technol. 213, 239 (2012), doi: 10.1016/j.surfcoat.2012.10.055
  • [9] K.S. Brammer, S. Oh, C.J. Frandsen, S. Jin, in: Biomaterials Science and Engineering, Ed. R. Pignatello, InTech, Rijeka 2011, doi: 10.5772/23320
  • [10] J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, Curr. Opin. Solid State Mater. Sci. 11, 3 (2007), doi: 10.1016/j.cossms.2007.08.004

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv125n418kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.