Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 4 | 872-874
Article title

Efficiencies of the Copper(II) Adsorbed Zeolites in the H_2O_2 Disproportionation Reaction

Title variants
Languages of publication
This work describes FT-IR studies results on adsorption of Cu(II) metal cation. Adsorption has been performed on 3A, 4A, 5A, AW-300, ammonium Y zeolite, organophilic, and molecular sieve zeolites using aqueous solution of the metal studied. Changes in intensities and positions of the pseudolattice bands corresponding to ring vibrations have been observed in the measured spectra. These changes are expected particularly in the pseudolattice bands connected with the presence of alumino- and silicooxygen tetrahedral rings in the zeolite structure. Also, Cu(II) adsorbed zeolites were each tested for their ability to catalyse the disproportionation of hydrogen peroxide in the presence of the added base imidazole. The Cu(II) adsorbed zeolites display efficiency in the disproportion reactions of hydrogen peroxide, producing water and dioxygen.
  • Faculty of Science and Art, Mehmet Akif Ersoy University, Burdur, Turkey
  • Faculty of Science and Art, Süleyman Demirel University, Isparta, Turkey
  • [1] M. Zamocky, F. Koller, Prog. Biophys. Mol. Biol. 72, 19 (1999), doi: 10.1016/S0079-6107(98)00058-3
  • [2] J. Paschke, M. Kirsch, H.G. Korth, H. Groot, R. Sustmann, J. Am. Chem. Soc. 123, 11099 (2001), doi: 10.1021/ja015544v
  • [3] X. Chen, H. Xie, J. Kong, J. Deng, Biosens. Bioelectron. 16, 115 (2001), doi: 10.1016/S0956-5663(00)00138-X
  • [4] I. Fridovich, Annu. Rev. Biochem. 64, 97 (1995), doi: 10.1146/
  • [5] M. Zienkiewicz, J. Szlachetko, C. Lothschütz, M. Hodorowicz, A. Jabłońska-Wawrzycka, J. Sá, B. Barszcz, Dalton Trans. 42, 7761 (2013), doi: 10.1039/c3dt50288k
  • [6] L. Tian, X., Lou, Z.Q. Pan, Q.M. Huang, H. Zhou, Micro Nano Lett. 8, 159 (2013), doi: 10.1049/mnl.2012.0852
  • [7] A. Ray, G.M. Rosair, G. Pilet, B. Dede, C.J. Gómez-García, S. Signorella, S. Bellu, S. Mitra, Inorg. Chim. Acta 375, 20 (2011), doi: 10.1016/j.ica.2011.04.008
  • [8] K.O. Xavier, J. Chacko, K.K.M. Yusuff, Appl. Catal. A, Gen. 258, 251 (2004), doi: 10.1016/j.apcata.2003.09.027
  • [9] P.P. Knops-Gerrits, D. De Vos, F. Thibault-Starzyk, P.A. Jacobs, Nature 369, 543 (1994), doi: 10.1038/369543a0
  • [10] R. Abraham, K.K.M. Yusuff, J. Mol. Catal. A, Chem. 198, 175 (2003), doi: 10.1016/S1381-1169(02)00687-8
  • [11] F. Larachi, S. Levesque, A. Sayari, J. Chem. Technol. Biotechnol. 73, 127 (1998), doi: 10.1002/(SICI)1097-4660(1998100)73:2<127::AID-JCTB941>3.0.CO;2-T
  • [12] R. Joshi, S.N. Limye, Oxid. Commun. 21, 337 (1998)
  • [13] I. Mochida, K. Takeshita, J. Phys. Chem. 78, 1653 (1974), doi: 10.1021/j100609a011
  • [14] M. Trombetta, G. Busca, J. Catal. 187, 521 (1999), doi: 10.1006/jcat.1999.2630
  • [15] T. Armaroli, M. Trombetta, A.G. Alejandre, J.R. Solis, G. Busca, Phys. Chem. Chem. Phys. 2, 3341 (2000), doi: 10.1039/b001807o
  • [16] T. Montanari, M. Bevilacqua, C. Resini, G. Busca, R. Pirone, G. Ruoppolo, J. Porous. Mater. 14, 291 (2007), doi: 10.1007/s10934-006-9065-3
  • [17] K.H. Rhee, U.S. Rao, J.M. Stencel, G.A. Melson, J.E. Crawford, Zeolites 3, 337 (1983), doi: 10.1016/0144-2449(83)90179-3
  • [18] M.O. Adebajo, M.A. Long, R.L. Frost, Spectrochim. Acta A 60, 791 (2004), doi: 10.1016/S1386-1425(03)00302-0
  • [19] E.J. Larson, V.L. Pecoraro, in: Manganese Redox Enzymes, Ed. V.L. Pecoraro, Wiley-VCH, New York 1992, p. 1
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.