PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 3 | 829-832
Article title

Positron Scattering at Thermal Energies

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Modified effective range theory in analytical form is used to extrapolate elastic cross-sections down to thermal energies for positron scattering from five atomic and molecular targets including Ar, H_2, N_2, C_6H_6 (benzene) and C_6H_{12} (c-hexane). The derived scattering parameters are then used to estimate the annihilation rates for chosen elements using a simple formula by Gribakin. We show that a combination of two simple models has a potential for accurate parameterization of coefficients describing the interaction of thermal positrons with non-polar targets of low polarizability such as Ar and N_2.
Keywords
EN
Year
Volume
125
Issue
3
Pages
829-832
Physical description
Dates
published
2014-03
References
  • [1] E. Boronski, R.M. Nieminen, Phys. Rev. B 34, 3820 (1986), doi:10.1103/PhysRevB.34.3820
  • [2] W. Deng, D. Pliszka, R. S Brusa, G.P. Karwasz, A. Zecca, Acta Phys. Pol. A 101, 875 (2002)
  • [3] O.E. Mogensen, Positron Annihilation in Chemistry, Springer-Verlag, Berlin 1995
  • [4] I. Pepe, Paul Dal, J. Steyaert, F. Gimenonogues, J. Deutsch, R. Prieels, J. Phys. B 28, 3643 (1995), doi:10.1088/0953-4075/28/16/016
  • [5] G.P. Karwasz, Eur. Phys. J. D 35, 267 (2005), doi:10.1140/epjd/e2005-00225-3
  • [6] A. Muńoz, J.C. Oller, F. Blanco, J.D. Gorfinkiel, P. Limăo-Vieira, A. Maira-Vidal, J.G. Borge, O. Tengblad, C. Huerga, M. Téllez, G. García, J. Phys. Conf. Series 133, 012002 (2008), doi:10.1088/1742-6596/133/1/012002
  • [7] Cz. Szmytkowski, K. Maciąg, G. Karwasz, Phys. Scrip. 54, 271 (1996), doi:10.1088/0031-8949/54/3/006
  • [8] Z.Lj. Petrović, A. Banković, S. Dujko, S. Marjanović, M. Šuvakov, G. Malović, J.P. Marler, S.J. Buckman, R.D. White, R.E. Robson, J. Phys., Conf. Series 199, 012016 (2010), doi:10.1088/1742-6596/199/1/012016
  • [9] G.P. Karwasz, M. Barozzi, R.S. Brusa, A. Zecca, Nucl. Instrum. Methods Phys. Res. B 192, 157 (2002), doi:10.1016/S0168-583X(02)00857-1
  • [10] G. Karwasz, R.S. Brusa, M. Barozzi, A. Zecca, Nucl. Instrum. Methods Phys. Res. B 171, 178 (2000), doi:10.1016/S0168-583X(00)00035-5
  • [11] A.C.L. Jones, C. Makochekanwa, P. Caradonna, D.S. Slaughter, J.R. Machacek, R.P. McEachran, J.P. Sullivan, S.J. Buckman, A.D. Stauffer, I. Bray, D.V. Fursa, Phys. Rev. A 83, 032701 (2011), doi:10.1103/PhysRevA.83.032701
  • [12] Z. Idziaszek, G. Karwasz, Phys. Rev. A 73, 064701 (2006), doi:10.1103/PhysRevA.73.064701
  • [13] Z. Idziaszek, G. Karwasz, Eur. Phys. J. D 51, 347 (2009), doi:10.1140/epjd/e2009-00028-6
  • [14] K. Fedus, G.P. Karwasz, Z. Idziaszek, Phys. Rev. A 88, 012704 (2013), doi:10.1103/PhysRevA.88.012704
  • [15] T.S. Stein, W.E. Kauppila, V. Pol, J.H. Smart, G. Jesion, Phys. Rev. A 17, 1600 (1978), doi:10.1103/PhysRevA.17.1600
  • [16] O. Sueoka, S. Mori, J. Phys. Soc. Jap. 53, 2491 (1984), doi:10.1143/JPSJ.53.2491
  • [17] A. Zecca, M. Bettonte, J. Paridaens, G.P. Karwasz, R.S. Brusa, Meas. Sci. Technol. 9, 409 (1998), doi:10.1088/0957-0233/9/3/014
  • [18] R.S. Brusa, G.P. Karwasz, M. Bettonte, A. Zecca, Appl. Surf. Sci. 116, 59 (1997), doi:10.1016/S0169-4332(96)01028-8
  • [19] G.P. Karwasz, R.S. Brusa, A. Piazza, G. Kogel, European Community Research Project BREU-CT 90-0347, Final Technical Report, June 1995, Appendix A7.1
  • [20] G.P. Karwasz, A. Karbowski, Z. Idziaszek, R.S. Brusa, Nucl. Instrum. Methods Phys. Res. B 266, 471 (2008), doi:10.1016/j.nimb.2007.12.027
  • [21] G.P. Karwasz, D. Pliszka, R.S. Brusa, C. Perazzolli, A. Zecca, Acta Phys. Pol. A 107, 666 (2005)
  • [22] G.P. Karwasz, D. Pliszka, R.S. Brusa, Nucl. Instrum. Methods Phys. Res. B 247, 68 (2006), doi:10.1016/j.nimb.2006.01.065
  • [23] C. Makochekanwa, A. Bankovic, W. Tattersall, A. Jones, P. Caradonna, D.S. Slaughter, K. Nixon, M.J. Brunger, Z. Petrovic, J.P. Sullivan, S.J. Buckman, New J. Phys. 11, 103036 (2009), doi:10.1088/1367-2630/11/10/103036
  • [24] T.F. O'Malley, L. Spruch, L. Rosenberg, J. Math. Phys. 2, 491 (1961), doi:10.1063/1.1703735
  • [25] T.F. O'Malley, L. Rosenberg, L. Spruch, Phys. Rev. 125, 1300 (1962), doi:10.1103/PhysRev.125.1300
  • [26] T.N. Olney, N.M. Cann, G. Cooper, C.E. Brion, Chem. Phys. 223, 59 (1997), doi:10.1016/S0301-0104(97)00145-6
  • [27] T.M. Miller, Atomic and Molecular Polarizabilities in CRC Handbook of Chemistry and Physics, 86 ed., CRC Press, Boca Raton 2005
  • [28] G.F. Gribakin, J.A. Young, C.M. Surko, Rev. Mod. Phys. 82, 2557 (2010), doi:10.1103/RevModPhys.82.2557
  • [29] G.F. Gribakin, Phys. Rev. A 61, 22720 (2000), doi:10.1103/PhysRevA.61.022720
  • [30] R.P. McEachran, A.G. Ryman, A.D. Stauffer, J. Phys. B 12, 1031 (1979), doi:10.1088/0022-3700/12/6/019
  • [31] J.W. Darewych, P. Baille, J. Phys. B 7, L1 (1974), doi:10.1088/0022-3700/7/1/001
  • [32] C. Kurz, R.G. Greaves, C.M. Surko, Phys. Rev. Lett. 77, 2929 (1996), doi:10.1103/PhysRevLett.77.2929
  • [33] J.-Y. Zhang, J. Mitroy, K. Varga, Phys. Rev. Lett. 103, 223202 (2009), doi:10.1103/PhysRevLett.103.223202
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n338kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.