Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
Iron-molybdenum modified MCM-41 mesoporous materials were obtained by the application of direct hydrothermal method. An incorporation of iron and molybdenum ions in the synthesis stage led to structural changes of the MCM-41 support. With an increasing metals content, cylindrical pores of silica are destroyed. X-ray diffraction investigations indicated that both iron and molybdenum ions were first embedded in the silica walls and then formed highly dispersed species in the pores. The porous structure of the studied samples was examined by means of N_2 adsorption/desorption and PALS methods. The longest-lived o-Ps lifetime component remains constant but its intensity monotonically decreases, except for the sample with the highest metals content. These results indicate that an effect of o-Ps formation inhibition occurs.
Discipline
- 78.70.Bj: Positron annihilation(for positron states, see 71.60.+z in electronic structure of bulk materials; for positronium chemistry, see 82.30.Gg in physical chemistry and chemical physics)
- 78.67.Bf: Nanocrystals, nanoparticles, and nanoclusters
- 62.23.Pq: Composites (nanosystems embedded in a larger structure)
- 78.67.Sc: Nanoaggregates; nanocomposites
- 34.80.Lx: Recombination, attachment, and positronium formation
Journal
Year
Volume
Issue
Pages
789-792
Physical description
Dates
published
2014-03
Contributors
author
- Institute of Physics, M. Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
author
- Institute of Physics, M. Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
author
- Faculty of Chemistry, M. Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
author
- Institute of Physics, M. Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
References
- [1] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992), doi:10.1038/359710a0
- [2] R.S. Robert, A. Rafael, A.D. James, W.R. Thatcher, Micropor. Mesopor Mater. 66, 53 (2003), doi:10.1016/j.micromeso.2003.08.019
- [3] A. Taguchi, F. Schüth, Micropor. Mesopor. Mater. 77, 1 (2005), doi:10.1016/j.micromeso.2004.06.030
- [4] D. Liu, W.N. Evelyn Cheo, Y.W. Yvonne Lim, A. Borgna, R. Lau, Y. Yang, Catal. Today 154, 229 (2010), doi:10.1016/j.cattod.2010.03.054
- [5] Z. Surowiec, M. Wiertel, M. Budzyński, W. Gac, Nukleonika 58, 87 (2013)
- [6] Z. Surowiec, M. Wiertel, M. Budzyński, J. Sarzyński, J. Goworek, J. Non-Cryst. Solids 354, 4271 (2008), doi:10.1016/j.jnoncrysol.2008.06.032
- [7] I. Alonso-Lemu, Y. Verde-Gómez, L. Álvarez-Contreras, Int. J. Electrochem. Sci. 6, 4176 (2011)
- [8] A.P.V. Soares, M.F. Portela, A. Kiennemann, Catal. Rev. Sci. Eng. 47, 125 (2004), doi:10.1081/CR-200049088
- [9] G. Centi, F. Fazzini, J.L.G. Fierro, M.L. Granados, R. Sanz, D. Serrano, Stud. Surf. Sci. Catal. 118, 577 (1998), doi:10.1016/S0167-2991(98)80224-3
- [10] K.J. Chao, C.N. Wu, H. Chang, L.J. Lee, S. Hu, J. Phys. Chem. B 101, 6341 (1997), doi:10.1021/jp970609v
- [11] Z. Surowiec, M. Wiertel, A. Marynowska, W. Gac, W. Zawadzki, Nukleonika 58, 137 (2013)
- [12] J. Kansy, Nucl. Instrum. Meth. Phys. Res. A 374, 235 (1996), doi:10.1016/0168-9002(96)00075-7
- [13] M. Wiertel, Z. Surowiec, M. Budzyński, W. Gac, Nukleonika 58, 245 (2013)
- [14] S. Chakrabarti, S. Chaudhuri, P.M.G. Nambissan, Phys. Rev. B 71, 64105 (2005), doi:10.1103/PhysRevB.71.064105
- [15] S. Dannefaer, T. Bretagnon, D. Kerr, J. Appl. Phys. 74, 884 (1993), doi:10.1063/1.354882
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n329kz