PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 3 | 785-788
Article title

The Free Volume of Condensed Phases Confined in a Nanopore as Seen by Computer Simulations and Compared to PALS

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
In this contribution the free volume of glycerol phase confined in a nanopore in a wide temperature range is computed. The computed free volume is compared to the previously computed values in the glycerol bulk. The mean cavity volumes are also discussed with the experimental measurements by positronium annihilation lifetime spectroscopy. The computer simulations show that in the case of the confined glycerol phase the mean cavity volumes are larger than in the simulated bulk, and also the temperature dependence has a different qualitative behavior; the computed data are in agreement with experimental measurements performed for glycerol in a pore of comparable size with diameter 6 nm. The simulations also indicate that an aspect of filling a pore is important for experimentalists. In the case of a perfectly sealed pore the cavity volume is observed to rise with decreasing temperature.
Keywords
Year
Volume
125
Issue
3
Pages
785-788
Physical description
Dates
published
2014-03
References
  • [1] G.B. McKenna, Eur. Phys. J. Special Topics 189, 285 (2010), doi:10.1140/epjst/e2010-01334-8
  • [2] D. Kilburn, E.P. Sokol, V.G. Sakai, A.M. Alam, Appl. Phys. Lett. 92, 033109 (2008), doi:10.1063/1.2835903
  • [3] D. Račko, R. Chelli, G. Cardini, S. Califano, J. Bartos, Eur. Phys. J. D 32, 289 (2005), doi:10.1140/epjd/e2005-00015-y
  • [4] D. Račko, S. Capponi, F. Alvarez, J. Colmenero, J. Chem. Phys. 134, 044512 (2011), doi:10.1063/1.352538
  • [5] R. Busselez, R. Lefort, Q. Ji, F. Affouard, D. Morineau, Phys. Chem. Chem. Phys. 11, 11127 (2009), doi:10.1039/B911859D
  • [6] R. Vink, G. Barkema, Phys. Rev. B 67, 245201 (2003), doi:10.1103/PhysRevB.67.245201
  • [7] S.W. Bunte, H. Sun, J. Phys. Chem. B 104, 2477 (2000)
  • [8] H. Sun, J. Phys. Chem. B 102, 7338 (1998), doi:10.1021/jp980939v
  • [9] S. Arizzi, P.H. Mott, U.W. Suter, J. Polym. Sci., Part B, Polym. Phys. 30, 415 (1992), doi:10.1002/polb.1992.090300501
  • [10] J.-E. Kluin, T. Yu, S. Vleeshouwers, J.D. McGervey, A.M. Jamieson, R. Simha, K. Sommeril, Macromolecules 26, 1853 (1993), doi:10.1021/ma00060a010
  • [11] L.T. Zhuravlev, Colloids Surf. A 173, 1 (2000), doi:10.1016/S0927-7757(00)00556-2
  • [12] J.I. Siepmann, D. Frenkel, Mol. Phys. 75, 59 (1992), doi:10.1080/00268979200100061
  • [13] D. Račko, P. Cifra, J. Chem. Phys. 138, 184904 (2013), doi:10.1063/1.4803674
  • [14] O. Šolcová, et al., Appl. Catal. A General 313, 167 (2006), doi:10.1016/j.apcata.2006.07.021
  • [15] D. Račko, J. Krištiak, Mater. Sci. Forum 733, 33 (2013), doi:10.4028/www.scientific.net/MSF.733.33
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n328kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.