Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
Silver nanoparticles with continuous size distribution from 10 to 20 nm were incorporated into porous glass produced using sol-gel technique. Positron annihilation lifetime spectroscopy was used to compare obtained material with an undoped reference glass. The positron annihilation lifetime spectroscopy measurement were made in a broad temperature range (from - 180C to 200°C). The experimental lifetime values were compared with the predictions of the extended Tao-Eldrup model of the temperature range. Experimental results for the reference material were in agreement with the model, except for a small discrepancy at low temperatures. In doped material substantial changes and non-monotonous temperature dependences of intensity and lifetime values were observed. Heating the material to 200C resulted in reorganization of the material structure.
Discipline
- 78.70.Bj: Positron annihilation(for positron states, see 71.60.+z in electronic structure of bulk materials; for positronium chemistry, see 82.30.Gg in physical chemistry and chemical physics)
- 61.43.Gt: Powders, porous materials
- 36.10.Dr: Positronium(see also 82.30.Gg Positronium chemistry)
- 65.60.+a: Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.
Journal
Year
Volume
Issue
Pages
778-781
Physical description
Dates
published
2014-03
Contributors
author
- Institute of Physics, Maria Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
author
- Institute of Physics, Maria Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
author
- Chemistry Institute, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
author
- Chemistry Institute, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
References
- [1] R. Zaleski, J. Goworek, A. Borówka, A. Kierys, M. Wiśniewski, in: Characterisation of Porous Solids VIII, Eds. N. Seaton, F.R. Reinoso, P. Llewellyn, S. Kaskel, RSC Publishing, Cambridge, p. 400, doi:10.1039/9781847559418-00400
- [2] C.G. Fisher, M.H. Webber, C.L. Wang, S.P. McNeil, K.G. Lynn, Phys. Rev. B 71, 180102 (2005), doi:10.1103/PhysRevB.71.180102
- [3] S. Kunishige, M. Koshimizu, K. Asai, Radiat. Phys. Chem. 78, 1088 (2009), doi:10.1016/j.radphyschem.2009.06.030
- [4] S. Thraenert, E.M. Hassan, D. Enke, D. Fuerst, R. Krause-Rehberg, Phys. Status Solidi C 4, 3819 (2007), doi:10.1002/pssc.200675738
- [5] R. Zaleski, J. Wawryszczuk, J. Goworek, A. Borówka, T. Goworek, J. Coll. Interface Sci. 262, 466 (2003), doi:10.1016/S0021-9797(03)00206-6
- [6] T. Goworek, K. Ciesielski, B. Jasińska, J. Wawryszczuk, Chem. Phys. Lett. 272, 91 (1997), doi:10.1016/S0009-2614(97)00504-6
- [7] R. Reisfeld, T. Saraidarov, G. Panzer, V. Levchenko, M. Gaft, Opt. Mater. 34, 351 (2011), doi:10.1016/j.optmat.2011.04.007
- [8] T. Saraidarov, V. Levchenko, R. Reisfeld, Phys. Status Solidi C 7, 2648 (2010), doi:10.1002/pssc.200983784
- [9] J. Kansy, Nucl. Instr. Methods Phys. Res. A 374, 235 (1996), doi:10.1016/0168-9002(96)00075-7
- [10] A. Shukla, M. Peter, L. Hoffmann, Nucl. Instrum. Methods Phys. Res. A 335, 310 (1993), doi:10.1016/0168-9002(93)90286-Q
- [11] R. Zaleski, EELViS, http://eelvis.sourceforge.net, Accessed: 18 Jan. 2010
- [12] B. Sláviková, M. Miklošovičová, E. Illeková, V. Majernik, O. Šauša, J. Krištiak, K. Jesenák, Mater. Sci. Forum 733, 107 (2013), doi:10.4028/www.scientific.net/MSF.733.107
- [13] B. Jasińska, M. Śniegocka, R. Reisfeld, E. Zigansky, Nukleonika 58, 241 (2013)
- [14] M. Śniegocka, Ph.D. Thesis, Maria Curie-Skłodowska University, Lublin 2009
- [15] M. Gorgol, R. Zaleski, A. Kierys, Nukleonika 58, 229 (2013)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n326kz