Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 3 | 764-766

Article title

Positron Lifetime Measurements of Vacancy Defects in Complex Oxides

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Native defects in complex oxides play a crucial role in determining their optical, electrical, and magnetic properties and it is difficult to identify and characterize them. Positron lifetime spectroscopy is a powerful technique to study vacancy defects; however its application to complex oxides has been limited. In this work we apply positron lifetime spectroscopy to study open volume defects in rare earth doped yttrium aluminum garnet (YAG) complex oxides grown in argon atmosphere. In YAG single crystals, positron lifetime measurements identified isolated aluminum vacancies and complexes of aluminum vacancy and neighbor oxygen vacancies. Thermoluminescence measurements were also performed to elucidate the interaction between trapping defects and luminescence centers. By combining positron lifetime and thermoluminescence, both the defect type and its effect on the optical properties of YAG crystals were revealed.

Keywords

EN

Contributors

author
  • Department of Physics and Astronomy, Washington State University, Pullman, Washington, USA
author
  • Department of Physics and Astronomy, Washington State University, Pullman, Washington, USA
  • Department of Physics and Astronomy & Center of Photochemical Sciences, Bowling Green State University Bowling Green, Ohio, USA

References

  • [1] R. Ramesh, D.G. Schlom, MRS Bull. 33, 1006 (2008)
  • [2] M. Grinberg, A. Sikorska, A. Śliwiński, J. Barzowska, Y.R. Shen, S.B. Ubizskii, S.S. Melnyk, Phys. Rev. B 67, 045113 (2003), doi:10.1103/PhysRevB.67.045113
  • [3] Shin-ichiro M. Nomura, T. Harada, K. Yoshikawa, Phys. Rev. Lett. 88, 093903 (2002), doi:10.1103/PhysRevLett.88.093903
  • [4] Y.N. Xu, Y. Chen, S.D. Mo, W.Y. Ching, Phys. Rev. B 65, 235105 (2002), doi:10.1103/PhysRevB.65.235105
  • [5] A.G. Okhrimchuk, A.V. Shestakov, Phys. Rev. B 61, 988 (2000), doi:10.1103/PhysRevB.61.988
  • [6] E. Zych, C. Brecher, J. Glodo, J. Phys., Condens. Matter 12, 1947 (2000)
  • [7] S.R. Rotman, C. Warde, J. Appl. Phys. 58, 522 (1985), doi:10.1063/1.336291
  • [8] F.A. Selim, D. Solodovnikov, M.H. Weber, K.G. Lynn, Appl. Phys. Lett. 91, 104105 (2007), doi:10.1063/1.2780119
  • [9] R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors, Springer-Verlag, Berlin 1999
  • [10] C.R. Varney, D.T. Mackay, A. Pratt, S.M. Reda, F.A. Selim, J. Appl. Phys. 111, 063505 (2012), doi:10.1063/1.3693581
  • [11] D.T. Mackay, C.R. Varney, J. Buscher, F.A. Selim, J. Appl. Phys. 112, 2 (2012), doi:10.1063/1.4739722
  • [12] D.J. Robbins, B. Cockayne, B. Lent, C.N. Duckworth, J.L. Glasper, Phys. Rev. B 19, 1254 (1979), doi:10.1103/PhysRevB.19.1254
  • [13] V. Babin, K. Blazzek, A. Krasnikov, K. Nejezchleb, M. Nilk, T. Savikhina, S. Zazubovich, Phys. Status Solidi C 2, 97 (2005)
  • [14] C.R. Varney, S.M. Reda, D.T. Mackay, M.C. Rowe, F.A. Selim, AIP Adv. 1, 042170 (2011), doi:10.1063/1.3671646
  • [15] F.A. Selim, C.R. Varney, M.C. Taurn, M.C. Rowe, G.S. Collins, M.D. McClusky, Phys. Rev. B 88, 174102 (2013), doi:10.1103/PhysRevB.88.174102

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv125n322kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.