Title variants
Languages of publication
Abstracts
Native defects in complex oxides play a crucial role in determining their optical, electrical, and magnetic properties and it is difficult to identify and characterize them. Positron lifetime spectroscopy is a powerful technique to study vacancy defects; however its application to complex oxides has been limited. In this work we apply positron lifetime spectroscopy to study open volume defects in rare earth doped yttrium aluminum garnet (YAG) complex oxides grown in argon atmosphere. In YAG single crystals, positron lifetime measurements identified isolated aluminum vacancies and complexes of aluminum vacancy and neighbor oxygen vacancies. Thermoluminescence measurements were also performed to elucidate the interaction between trapping defects and luminescence centers. By combining positron lifetime and thermoluminescence, both the defect type and its effect on the optical properties of YAG crystals were revealed.
Discipline
- 78.70.Bj: Positron annihilation(for positron states, see 71.60.+z in electronic structure of bulk materials; for positronium chemistry, see 82.30.Gg in physical chemistry and chemical physics)
- 78.20.-e: Optical properties of bulk materials and thin films(for optical properties related to materials treatment, see 81.40.Tv; for optical materials, see 42.70-a; for optical properties of superconductors, see 74.25.Gz; for optical properties of rocks and minerals, see 91.60.Mk; for optical properties of specific thin films, see 78.66.-w)
- 81.40.Tv: Optical and dielectric properties related to treatment conditions
Journal
Year
Volume
Issue
Pages
764-766
Physical description
Dates
published
2014-03
Contributors
author
- Department of Physics and Astronomy, Washington State University, Pullman, Washington, USA
author
- Department of Physics and Astronomy, Washington State University, Pullman, Washington, USA
- Department of Physics and Astronomy & Center of Photochemical Sciences, Bowling Green State University Bowling Green, Ohio, USA
References
- [1] R. Ramesh, D.G. Schlom, MRS Bull. 33, 1006 (2008)
- [2] M. Grinberg, A. Sikorska, A. Śliwiński, J. Barzowska, Y.R. Shen, S.B. Ubizskii, S.S. Melnyk, Phys. Rev. B 67, 045113 (2003), doi:10.1103/PhysRevB.67.045113
- [3] Shin-ichiro M. Nomura, T. Harada, K. Yoshikawa, Phys. Rev. Lett. 88, 093903 (2002), doi:10.1103/PhysRevLett.88.093903
- [4] Y.N. Xu, Y. Chen, S.D. Mo, W.Y. Ching, Phys. Rev. B 65, 235105 (2002), doi:10.1103/PhysRevB.65.235105
- [5] A.G. Okhrimchuk, A.V. Shestakov, Phys. Rev. B 61, 988 (2000), doi:10.1103/PhysRevB.61.988
- [6] E. Zych, C. Brecher, J. Glodo, J. Phys., Condens. Matter 12, 1947 (2000)
- [7] S.R. Rotman, C. Warde, J. Appl. Phys. 58, 522 (1985), doi:10.1063/1.336291
- [8] F.A. Selim, D. Solodovnikov, M.H. Weber, K.G. Lynn, Appl. Phys. Lett. 91, 104105 (2007), doi:10.1063/1.2780119
- [9] R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors, Springer-Verlag, Berlin 1999
- [10] C.R. Varney, D.T. Mackay, A. Pratt, S.M. Reda, F.A. Selim, J. Appl. Phys. 111, 063505 (2012), doi:10.1063/1.3693581
- [11] D.T. Mackay, C.R. Varney, J. Buscher, F.A. Selim, J. Appl. Phys. 112, 2 (2012), doi:10.1063/1.4739722
- [12] D.J. Robbins, B. Cockayne, B. Lent, C.N. Duckworth, J.L. Glasper, Phys. Rev. B 19, 1254 (1979), doi:10.1103/PhysRevB.19.1254
- [13] V. Babin, K. Blazzek, A. Krasnikov, K. Nejezchleb, M. Nilk, T. Savikhina, S. Zazubovich, Phys. Status Solidi C 2, 97 (2005)
- [14] C.R. Varney, S.M. Reda, D.T. Mackay, M.C. Rowe, F.A. Selim, AIP Adv. 1, 042170 (2011), doi:10.1063/1.3671646
- [15] F.A. Selim, C.R. Varney, M.C. Taurn, M.C. Rowe, G.S. Collins, M.D. McClusky, Phys. Rev. B 88, 174102 (2013), doi:10.1103/PhysRevB.88.174102
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n322kz