Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 3 | 760-763
Article title

Defects in Zirconia Nanomaterials Doped with Rare-Earth Oxides

Title variants
Languages of publication
Positron lifetime and coincidence Doppler broadening measurements on ZrO_2+3 mol.% RE_2O_3 (RE = Eu, Gd, Lu) nanopowders and ceramics obtained by sintering these nanopowders are reported. The initial nanopowders were prepared by a co-precipitation technique and exhibited a mean particle size of ≈ 15 nm. The nanopowders were calcined and pressure-compacted. All compacted nanopowders exhibited the prevailing tetragonal phase with at most 15% of the monoclinic admixture. Positrons in compacted nanopowders were found to annihilate almost exclusively at grain boundaries: (i) vacancy-like misfit defects along grain boundaries and (ii) larger defects situated at intersections of grain boundaries (triple points). In nanopowders, a small portion of positrons formed positronium in pores between crystallites. Sintering of nanopowders at 1500C caused a substantial grain growth and formation of ceramics. Sintering-induced grain growth led to a disappearance of the triple points and pores. The ceramics containing Eu and Gd dopants consist of mixture of the monoclinic and the tetragonal phase, while the ceramics with Lu dopant exhibits almost exclusively the tetragonal phase.
Physical description
  • [1] Science and Technology of Zirconia, Vol. V, Eds. S.P. Badwal, M.J. Bannister, R.H.J. Hannink, Technomic Pub. Co., Lancaster (PN) 1993
  • [2] Sintering, Eds. R.H.R. Castro, K. van Benthem, Springer-Verlag, Berlin 2013, doi:10.1007/978-3-642-31009-6
  • [3] I.A. Yashchishyn, A.M. Korduban, V.V. Trachevskiy, T.E. Konstantinova, I.A. Danilenko, G.K. Volkova, I.K. Nosolev, Funct. Mater. 17, 306 (2010)
  • [4] I. Prochazka, J. Cizek, O. Melikhova, J. Kuriplach, W. Anwand, G. Brauer, T.E. Konstantinova, I.A. Danilenko, I.A. Yashchishyn, Def. Diff. Forum 331, 181 (2012), doi:10.4028/
  • [5] T. Konstantinova, I. Danilenko, V. Glazunova, G. Volkova, O. Gorban, J. Nanopart. Res. 13, 4015 (2011), doi:10.1007/s11051-011-0329-8
  • [6] F. Becvar, J. Cizek, I. Prochazka, J. Janotova, Nucl. Instrum. Methods. Phys. Res. A 443, 372 (2010), doi:10.1016/j.nima.2004.09.031
  • [7] I. Prochazka, I. Novotny, F. Becvar, Mater. Sci. Forum 255-257, 772 (1997)
  • [8] H. Surbeck, Helv. Phys. Acta 50, 705 (1977)
  • [9] J. Cizek, M. Vlcek, I. Prochazka, Nucl. Instrum. Methods Phys. Res. A 623, 982 (2010), doi:10.1016/j.nima.2010.07.046
  • [10] M. Eldrup, D. Lightbody, J.N. Sherwood, Chem. Phys. 63, 51 (1981)
  • [11] K. Ito, H. Nakanishi, Y. Ujihira, J. Chem. Phys. B 103, 4555 (1999)
  • [12] J. Cizek, O. Melikhova, I. Prochazka, J. Kuriplach, G. Brauer, W. Anwand, T.E. Konstantinova, I.A. Danilenko, Phys. Rev. B 81, 024116 (2010), doi:10.1103/PhysRevB.81.024116
  • [13] I. Prochazka, J. Cizek, O. Melikhova, T.E. Konstantinova, I.A. Danilenko, I.A. Yashchishyn, W. Anwand, G. Bauer, J. Phys., Conf. Ser. 443, 012026 (2013), doi:10.1088/1742-6596/443/1/012026
  • [14] K. Ito, Y. Yagi, S. Hirano, M. Miyayama, T. Kudo, A. Kishimoto, Y. Ujihira, J. Ceram. Soc. Japan 107, 123 (1999)
  • [15] O. Melikhova, J. Cizek, I. Prochazka, T.E. Konstantinova, I.A. Danilenko, Phys. Proc. 35, 134 (2012), doi:10.1016/j.phpro.2012.06.024
  • [16] P. Hautojärvi, C. Corbel, in: Positron Spectroscopy of Solids, Eds. A. Dupasquier, A.P. Mills, Jr., IOS Press, Amsterdam 1995, p. 491
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.