Title variants
Languages of publication
Abstracts
Vacancy behavior and positron trapping at selected grain boundaries in iron, nickel, and zirconia are investigated theoretically. It is found that the grain boundary vacancy loses its free volume in metals at moderate temperatures whereas it is kept up to very high temperatures in zirconia. The consequences of these findings for positron annihilation studies of nanocrystalline materials are discussed.
Discipline
- 78.70.Bj: Positron annihilation(for positron states, see 71.60.+z in electronic structure of bulk materials; for positronium chemistry, see 82.30.Gg in physical chemistry and chemical physics)
- 71.60.+z: Positron states(for positron annihilation, see 78.70.Bj)
- 61.72.Mm: Grain and twin boundaries
- 61.72.J-: Point defects and defect clusters
Journal
Year
Volume
Issue
Pages
722-725
Physical description
Dates
published
2014-03
Contributors
author
- Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University in Prague V Holešovičkách 2, CZ-180 00 Prague, Czech Republic
References
- [1] H.-E. Schaefer, R. Würschum, Phys. Lett. A 119, 370 (1987), doi:10.1016/0375-9601(87)90618-9
- [2] J. Kuriplach, O. Melikhova, M. Hou, S.V. Petegem, E. Zhurkin, M. Šob, Appl. Surf. Sci. 255, 128 (2008), doi:10.1016/j.apsusc.2008.05.199
- [3] M.R. Sørensen, Y. Mishin, A.F. Voter, Phys. Rev. B 62, 3658 (2000), doi:10.1103/PhysRevB.62.3658
- [4] J. Čížek, O. Melikhova, I. Procházka, J. Kuriplach, R. Kužel, G. Brauer, W. Anwand, T.E. Konstantinova, I.A. Danilenko, Phys. Rev. B 81, 024116 (2010), doi:10.1103/PhysRevB.81.024116
- [5] J. Kuriplach, O. Melikhova, J. Čížek, I. Procházka, G. Brauer, W. Anwand, Mater. Sci. Forum 733, 240 (2013), doi:10.4028/www.scientific.net/MSF.733.240
- [6] M.L. Kronberg, F.H. Wilson, Trans. AIME 185, 501 (1949)
- [7] P. Lejček, Grain Boundary Segregation in Metals, Vol. 136 of Springer Series in Materials Science, Springer, Heidelberg 2010
- [8] T. Ossowski, J. Kuriplach, E.E. Zhurkin, M. Hou, A. Kiejna, submitted to Phys. Rev. B, 2013
- [9] J. Kuriplach, O. Melikhova, M. Šob, P. Lejček, V. Paidar, to be published, 2014
- [10] E.C. Dickey, X. Fan, S.J. Pennycook, J. Am. Ceram. Soc. 84, 1361 (2001), doi:10.1111/j.1151-2916.2001.tb00842.x
- [11] S.B. Sinnott, S.Z. Mao, E.C. Dickey, J. Am. Ceram. Soc. 85, 1594 (2002), doi:10.1111/j.1151-2916.2002.tb00317.x
- [12] G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993), doi:10.1103/PhysRevB.47.558
- [13] G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994), doi:10.1103/PhysRevB.49.14251
- [14] P.E. Blöchl, Phys. Rev. B 50, 17953 (1994), doi:10.1103/PhysRevB.50.17953
- [15] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992), doi:10.1103/PhysRevB.46.6671
- [16] S. Nosé, J. Chem. Phys. 81, 511 (1984), doi:10.1063/1.447334
- [17] M.J. Puska, R.M. Nieminen, J. Phys. F, Met. Phys. 13, 333 (1983), doi:10.1088/0305-4608/13/2/009
- [18] A.P. Seitsonen, M.J. Puska, R.M. Nieminen, Phys. Rev. B 51, 14057 (1995), doi:10.1103/PhysRevB.51.14057
- [19] M.J. Puska, R.M. Nieminen, Rev. Mod. Phys. 66, 841 (1994), doi:10.1103/RevModPhys.66.841
- [20] N.D. Drummond, P. Lopéz Ríos, R.J. Needs, C.J. Pickard, Phys. Rev. Lett. 107, 207402 (2011), doi:10.1103/PhysRevLett.107.207402
- [21] A. Ishii, S. Ogata, H. Kimizuka, J. Li, Phys. Rev. B 85, 064303 (2012), doi:10.1103/PhysRevB.85.064303
- [22] J. Kuriplach, O. Melikhova, M. Šob, submitted to Phys. Rev. B, 2013
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n311kz