Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 2 | 669-672
Article title

Structural Analysis of Ce Doped La_{1-x}Sr_xCo_{1-y}Fe_yO_{3-δ} Nanopowders Synthesized by Glycine-Nitrate Gel Combustion

Title variants
Languages of publication
Ce doped La_{1-x}Sr_xCo_{1-y}Fe_yO_3 (LCSCF) is a widely used cathode material due to its high catalytic activity for oxygen reduction and high oxygen exchange coefficient. LCSCF is also known with its high ionic and electronic conductivities and low electrode polarization losses which are highly critical properties for low temperature solid oxide fuel cell applications. In this study, structural properties of the LCSCF cathode nanopowder materials synthesized by glycine-nitrate gel combustion have been investigated by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and nanosizer. Synthesized nanopowders represent volcanic ash like structures and morphologies. Ce, Sr, Co, and Fe are found to have significant effects on the structural properties of powders in terms of powders morphology, agglomerate structure, crystallite size and also lattice parameter of perovskite crystal. All synthesized ash powders have particle sizes around 50-600 nm, varying crystalline structures of perovskite and fluorite depending on molar ratio of Ce in the composition. Increasing molar Ce ratio over 0.4 is found to lead to the formation of a separate nano ceria phase in fluorite crystal structure on the surface of the synthesized powder.
Physical description
  • 1. S.M. Haile, doi: 10.1016/j.actamat.2003.08.004, Acta Mater. 51, 5981 (2003)
  • 2. S.C. Singhal, doi: 10.1016/S0167-2738(00)00452-5, Solid State Ion. 135, 305 (2000)
  • 3. S.P. Jiang, W. Wang, doi: 10.1016/j.ssi.2005.03.011, Solid State Ion. 176, 1351 (2005)
  • 4. N.E. Trofimenko, H. Ullmann, doi: 10.1016/S0955-2219(99)00292-7, J. Europ. Ceram. Soc. 20, 1241 (2000)
  • 5. H.Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, doi: 10.1016/S0167-2738(97)00360-3, Solid State Ion. 100, 283 (1997)
  • 6. C. Sun, R. Hui, J. Roller, doi: 10.1007/s10008-009-0932-0, J. Solid State Electrochem. 14, 1125 (2010)
  • 7. J.H. Kim, H. Kim, doi: 10.1016/j.ceramint.2012.02.049, Ceram. Int. 38, 4669 (2012)
  • 8. J.H. Kim, Y.M. Park, H. Kim, doi: 10.1016/j.jpowsour.2010.12.029, J. Power Sources 196, 3544 (2011)
  • 9. V. Dusastre, J.A. Kilner, doi: 10.1016/S0167-2738(99)00108-3, Solid State Ion. 126, 163 (1999)
  • 10. N.A. Baharuddin, H.A. Rahman, A. Muchtar, A.B. Sulong, H. Abdullah, doi: 10.1631/jzus.A1200134, J. Zhejiang University-Science A (Appl. Phys. Eng.) 14, 11 (2013)
  • 11. L. Nie, M. Liu, Y. Zhang, M. Liu, doi: 10.1016/j.jpowsour.2010.02.049, J. Power Sources 195, 4704 (2010)
  • 12. W. Kim, H. Song, J. Moon, H. Lee, doi: 10.1016/j.ssi.2006.07.049, Solid State Ion. 177, 3211 (2006)
  • 13. B. Liu, Y. Zhang, doi: 10.1016/j.jallcom.2006.11.142, J. Alloys Comp. 453, 418 (2008)
  • 14. C.P. Kashinath, S.T. Aruna, T. Mimani, doi: 10.1016/S1359-0286(02)00123-7, Curr. Opinion Solid State Mater. Sci. 6, 507 (2002)
  • 15. Ö. Yıldız, A.M. Soydan, A. Ata, B. Tunaboylu, D. Akin, E.F. Ipcizade, doi: 10.12693/APhysPolA.123.432, Acta Phys. Pol. A 123, 432 (2013)
  • 16. D. Bouchard, L. Sun, F. Gitzhofer, G.M. Brisard, doi: 10.1361/105996306X92578, J. Thermal Spray Technol. 15, 37 (2006)
  • 17. T. Striker, J.S. Ruud, Y. Gao, W.J. Heward, C. Steinbruchel, doi: 10.1016/j.ssi.2007.06.011, Solid State Ion. 178, 1326 (2007)
  • 18. Y. Leng, S.H. Chan, doi: 10.1016/j.ijhydene.2008.04.034, Int. J. Hydrogen Energy 33, 3808 (2008)
  • 19. Z. Shao, W. Zhou, Z. Zhu, doi: 10.1016/j.pmatsci.2011.08.002, Prog. Mater. Sci. 57, 804 (2012)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.