Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 2 | 645-647
Article title

Comparison of Antibacterial Properties of Nano TiO_2 and ZnO Particle Filled Polymers

Title variants
Languages of publication
Antibacterial property for the plastic products is very important due to their wide spread usage in many areas close to human health such as a child toy or a food package. There are some methods to make polymers antibacterial such as ionizing radiation but they can be still infected by micro organisms during usage of them. The best and easy way to obtain antibacterial polymers is melt mixing of polymers with antibacterial agents. In this study, nano TiO_2 and ZnO particles were mixed with polypropylene and high density polyethylene with a twin screw extruder. Silane was applied to the particles prior melt mixing in order to prevent agglomeration and FT-IR analysis was done to characterize the particles. After melt mixing, particle filled rectangular plates were obtained by plastic injection molding and antibacterial tests were done on the plates according to a standard method, JIS Z 2801. According to the results, satisfactory antibacterial properties were obtained for both polymers and it has been seen that particles without silane could not provide antibacterial effect.
  • Department of Mechanical Engineering, Yildiz Technical University, Istanbul, 34349, Turkey
  • Department of Polymer Engineering, Yalova University, Yalova, 77100, Turkey
  • Department of Chemistry, Yildiz Technical University, Istanbul, 34210, Turkey
  • 1. G. Sauvet, S. Dupond, K. Kazmierski, doi: 10.1002/(SICI)1097-4628(20000222)75:8<1005::AID-APP5>3.0.CO;2-W, J. Appl. Polym. Sci. 75, 1005 (2000)
  • 2. H.A. Bartels, doi: 10.1016/0096-6347(46)90135-4, Am. J. Orthod. Oral. Surg. 32, 344 (1946)
  • 3. J. Sawai, T. Yoshikawa, doi: 10.1039/C2CY20033C.39, J. Appl. Microbiol. 96, 803 (2004)
  • 4. L. Caballero, K.A. Whitehead, N.S. Allen, J. Verran, doi: 10.1155/2013/795060, J. Photochem. Photobiol. A 202, 92 (2009)
  • 5. N. Padmavathy, R. Vijayaghavan, doi: 10.1177/0021998312436999, Sci. Tech. Adv. Mater. 9, 1 (2008)
  • 6. S. Rana, J. Rawat, M.M. Sorenson, R.D.K. Misra, doi: 10.1016/j.actbio.2006.03.005, Acta Biometer. 2, 421 (2006)
  • 7. J.L. Yang, S.J. An, W.I. Park, doi: 10.1002/adma.200306673, Adv. Mater. 16, 1661 (2004)
  • 8. R. Brayner, R. Ferrari-lliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fievet, doi: 10.1021/nl052326h, Nano Lett. 6, 866 (2006)
  • 9. M. Altan, H. Yildirim, doi: 10.1177/0021998312436999, J. Compos. Mater. 36, 3189 (2012)
  • 10. M. Altan, H. Yildiriım, doi: 10.1016/S1005-0302(12)60116-9, J. Mater. Sci. Technol. 28, 686 (2012)
  • 11. B.B. Johnsen, K. Olafsen, A. Stori, doi: 10.1016/S0143-7496(03)00008-3, Int. J. Adhes. 23, 155 (2003)
  • 12. B. Bai, J. Zhao, X. Feng, doi: 10.1016/S0167-577X(03)00240-4, Mater. Lett. 57, 3914 (2003)
  • 13. G. Gu, Z. Zhang, H. Dang, doi: 10.1016/S0169-4332(03)00865, Appl. Surf. Sci. 1-4, 129 (2004)
  • 14. Japanese Industrial Standard, Test for Antimicrobial Activity, JIS Z 2801 (2000)
  • 15. M. Altan, H. Yildirim, in: 14th Int. Conf. on Advances in Material and Processing Technology, Vol. 1, Yildiz Technical University, Istanbul 2011, p. 1
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.