Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 2 | 608-610
Article title

Photocatalytic Activity of TiO_2 Powders Synthesized by Supercritical Gas Antisolvent Method

Title variants
Languages of publication
Synthesis of nanocrystalline, spherical, and anatase type TiO_2 photocatalyst were performed by supercritical gas antisolvent process in the range of 50-150C and 100-150 bar. As-prepared samples were calcined at 500C and characterized by X-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller method, differential thermal analysis/thermal gravimetry. In X-ray diffraction analysis, the anatase crystalline phase of titanium dioxide has been detected. The mean crystalline size of powders is about 13 nm. The photoactivity test of the powders was evaluated by the photodegradation of aqueous RR 180 (reactive red 180) solution under UV light. While the photocatalytic performance of TiO_2 powders (Brunauer-Emmett-Teller surface area of 69.2 m^2/g) produced at 150 bar and 150C was found to be 98%, only 25% degradation was observed with powder produced at 150 bar and 100°C. Results showed that the powder properties and photocatalytic activity can be tuned by controlling the supercritical conditions such as temperature and pressure.
  • Department of Material Science and Engineering, Dumlupınar University, 43030 Kutahya, Turkey
  • Department of Material Science and Engineering, Dumlupınar University, 43030 Kutahya, Turkey
  • 1. N. Venkatachalam, M. Palanichamy, V. Murugesan, doi: 10.1016/j.matchemphys.2007.04.003, Mater. Chem. Phys. 104, 454 (2007)
  • 2. L. Znaidi, R. Sèraphimova, J.F. Bocquet, C. Colbeau-Justin, C. Pommier, doi: 10.1016/S0025-5408(00)00482-7, Mater. Res. Bull. 36, 811 (2001)
  • 3. D. Beydoun, R. Amal, G. Low, S. McEvoy, doi: 10.1023/A:1010044830871, J. Nanopart. Res. 1, 439 (1999)
  • 4. S. Yang, L. Gao, doi: 10.1111/j.1551-2916.2005.00151.x, J. Am. Ceram. Soc. 88, 968 (2005)
  • 5. C.H. Cho, D.K. Kim, D.H. Kim, doi: 10.1111/j.1151-2916.2003.tb03437.x, J. Am. Ceram. Soc. 86, 1138 (2003)
  • 6. K.R. Lee, S.J. Kim, J.S. Song, J.H. Lee, Y.J. Chung, S. Park, doi: 10.1111/j.1151-2916.2002.tb00094.x, J. Am. Ceram. Soc. 85, 341 (2002)
  • 7. E. Alonso, I. Montequi, M.J. Cocero, doi: 10.1016/j.supflu.2009.01.005, J. Supercrit. Fluids 49, 233 (2009)
  • 8. E. Alonso, I. Montequi, S. Lucas, M.J. Cocera, doi: 10.1016/j.sup?u.2006.03.006, J. Supercrit. Fluids 39, 453 (2007)
  • 9. R. Sui, A.S. Rizkalla, P.A. Charpentier, doi: 10.1021/la0505972, Langmuir 21, 6150 (2005)
  • 10. M. Bahrami, S. Ranjbarian, doi: 10.1016/j.sup?u.2006.05.006, J. Supercrit. Fluids 40, 263 (2007)
  • 11. C. Aymonier, A. Loppinet-Serani, H. Reverón, Y. Garrabos, F. Cansell, doi: 10.1016/j.sup?u.2006.03.019, J. Supercrit. Fluids 38, 242 (2006)
  • 12. D.W. Watson, R.D. Smith, doi: 10.1111/j.1151-2916.1989.tb06237.x, J. Am. Ceram. Soc. 72, 871 (1989)
  • 13. A. Hertz, S. Sarrade, C. Guizard, A. Julbe, doi: 10.1016/j.jeurceramsoc.2004.12.033, J. Eur. Ceram. Soc. 26, 1195 (2006)
  • 14. Z. Knez, E. Weidner, doi: 10.1016/j.cossms.2003.11.002, Curr. Opin. Solid State Mater. Sci. 7, 353 (2003)
  • 15. F. Cansell, B. Chevalier, A. Demourgues, J. Etourneau, C. Even, V. Pessey, S. Petit, A. Tressaud, F. Weill, doi: 10.1039/A804964E, J. Mater. Chem. 9, 67 (1999)
  • 16. H. Gocmez, M. Tuncer, I. Uzulmez, doi: 10.1016/j.ceramint.2010.05.002, Ceram. Int. 36, 2231 (2010)
  • 17. E. Yassıtepe, H.C. Yatmaz, C. Ozturk, K. Ozturk, C. Duran, doi: 10.1016/j.jphotochem.2008.02.007, J. Photochem. Photobiol. A: Chem. 198, 1 (2008)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.