PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 2 | 606-607
Article title

Behavior of Quantum Fisher Information of Bell Pairs under Decoherence Channels

Content
Title variants
Languages of publication
EN
Abstracts
EN
Quantum Fisher information has recently been an essential tool for analyzing the phase sensitivity of the quantum states in various quantum tasks, requiring high precision, such as quantum clock synchronization, positioning and many applications which include quantum interferometers. Due to the interactions with the environment, all quantum systems are subject to various decoherence effects. Therefore the research on quantum Fisher information under decoherence has been recently attracting more attention. In this work, analyzing the quantum Fisher information, we study the phase sensitivity of bipartite quantum correlations, in particular four Bell pairs amplitude damping channels. For a specific Bell state we arrive at similar results of Greenberger-Horne-Zeilinger (GHZ) states (as expected). For the other three Bell states, we present our results which point the interesting behavior of quantum Fisher information with respect to the decoherence rate. We also find the regions where the quantum Fisher information exhibits discontinuities.
Keywords
EN
Contributors
author
  • Isik University, Istanbul, Turkey
author
  • Okan University, Istanbul, Turkey
author
  • Istanbul University, Istanbul, Turkey
author
  • Okan University, Istanbul, Turkey
References
  • 1. C.W. Helstrom, Quantum Detection and Estimation Theory, Academic Press, New York 1976
  • 2. A.S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, Amsterdam 1982
  • 3. R. Jozsa, D.S. Abrams, J.P. Dowling, C.P. Williams, doi: 10.1103/PhysRevLett.85.2010, Phys. Rev. Lett. 85, 2010 (2000)
  • 4. J.J. Bollinger, W.M. Itano, D.J. Wineland, D.J. Heinzen, doi: 10.1103/PhysRevA.54.R4649, Phys. Rev. A 54, R4649 (1996)
  • 5. P. Hyllus, O. Gühne, A. Smerzi, doi: 10.1103/PhysRevA.82.012337, Phys. Rev. A 82, 012337 (2010)
  • 6. L. Pezze, A. Smerzi, doi: 10.1103/PhysRevLett.102.100401, Phys. Rev. Lett. 102, 100401 (2009)
  • 7. J. Ma, Y.-X. Huang, X. Wang, C.P. Sun, doi: 10.1103/PhysRevA.84.022302, Phys. Rev. A 84, 022302 (2011)
  • 8. V. Giovannetti, S. Lloyd, L. Maccone, doi: 10.1126/science.1104149, Science 306, 5700 (2004)
  • 9. F. Ozaydin, A.A. Altintas, S. Bugu, C. Yesilyurt, doi: 10.1007/s10773-013-1588-1, Int. J. Theor. Phys. 52, 2977 (2013)
  • 10. W. Dur, G. Vidal, J.I. Cirac, doi: 10.1103/PhysRevA.62.062314s, Phys. Rev. A 62, 062314 (2000)
  • 11. S. K. Ozdemir, E. Matsunaga, T. Tashima, T. Yamamoto, M. Koashi, N. Imoto, doi: 10.1088/1367-2630/13/10/103003, New J. Phys. 13, 103003 (2011)
  • 12. S. Bugu, C. Yesilyurt, F. Ozaydin, doi: 10.1103/PhysRevA.87.032331, Phys. Rev. A 87, 032331 (2013)
  • 13. C. Yesilyurt, S. Bugu, F. Ozaydin, doi: 10.1007/s11128-013-0578-9, Quantum Inf. Process 12, 2965 (2013)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n2141kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.