Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 2 | 554-560

Article title

B-Spline Solution and the Chaotic Dynamics of Troesch's Problem

Content

Title variants

Languages of publication

EN

Abstracts

EN
A B-spline method is presented for solving the Troesch problem. The numerical approximations to the solution are calculated and then their behavior is studied and commenced. The chaotic dynamics exhibited by the solutions of Troesch's problem as they were derived by the decomposition method approximation are examined and an approximate critical value for the parameter λ is introduced also in this study. For the parameter value slightly less than λ ≈ 2.2, the solutions begin to show successive bifurcations, finally entering chaotic regimes at higher λ values. The effectiveness and accuracy of the B-spline method is verified for different values of the parameter, below its critical value, where the first bifurcation occurs.

Keywords

EN

Contributors

author
  • Istanbul Kultur University, Department of Mathematics-Computer, Istanbul, Turkey
author
  • Istanbul Kultur University, Faculty of Economic and Administrative Science, Istanbul, Turkey
author
  • Istanbul Kultur University, Department of Physics, Istanbul, Turkey

References

  • 1. J.P. Chiou, T.Y. Na, doi: 10.1016/0021-9991(75)90080-7, J. Comput. Phys. 19, 311 (1975)
  • 2. J. Lang, A. Walter, doi: 10.1016/0899-8248(92)90004-R, Impact Comput. Sci. Eng. 4, 269 (1992)
  • 3. E. Deeba, S.A. Khuri, S. Xie, doi: 10.1006/jcph.2000.6452, J. Comput. Phys. 159, 125 (2000)
  • 4. X. Feng, L. Mei, G. He, doi: 10.1016/j.amc.2006.11.161, Appl. Math. Comput. 189, 500 (2007)
  • 5. S.A. Khuri, doi: 10.1080/0020716022000009228, Int. J. Comp. Math. 80, 493 (2003)
  • 6. S.H. Chang, I.L. Chang, doi: 10.1016/j.amc.2007.05.026, Appl. Math. Comput. 195, 799 (2008)
  • 7. S. Momani, S. Abuasad, Z. Odibat, doi: 10.1016/j.amc.2006.05.138, Appl. Math. Comput. 183, 1351 (2006)
  • 8. E. Babolian, Sh. Javadi, doi: 10.1016/S0096-3003(03)00629-5, Appl. Math. Comput. 153, 253 (2004)
  • 9. Y. Lin, J.A. Enszer, M.A. Stadtherr, doi: 10.1016/j.compchemeng.2007.08.013, Comput. Chem. Eng. 32, 1714 (2008)
  • 10. M.R. Scott, H.A. Watts, in: Numerical Methods for Differential Systems, Eds. L. Lapidus, W.E. Schiesser, Academic Press, New York 1976, p. 197
  • 11. M.R. Scott, H.A. Watts, SIAM J. Numer. Anal. 14, 40 (1977)
  • 12. M.R. Scott, W.H. Vandevender, doi: 10.1016/0096-3003(75)90033-8, Appl. Math. Comput. 1, 187 (1975)
  • 13. J.R. Cash, F. Mazzia, doi: 10.1016/j.cam.2005.01.016, J. Comput. Appl. Math. 184, 362 (2005)
  • 14. H. Caglar, N. Caglar, M. Ozer, A. Valaristos, A.N. Anagnostopoulos, doi: 10.1080/00207160802545882, Int. J. Comp. Math. 87, 1885 (2010)
  • 15. S.M. Roberts, J.S. Shipman, doi: 10.1016/0021-9991(76)90026-7, J. Comput. Phys. 21, 291 (1976)
  • 16. M. Kubicek, V. Hlavacek, doi: 10.1016/0021-9991(75)90066-2, J. Comput. Phys. 17, 95 (1975)
  • 17. C. de Boor, A Practical Guide to Splines, Springer-Verlag, New York 1978
  • 18. R. Fletcher, Practical Methods of Optimization, Wiley, Southern Gate 1987
  • 19. H. Caglar, N. Caglar, M. Ozer, A. Valaristos, A.N. Miliou, A.N. Anagnostopoulos, doi: 10.1016/j.na.2008.11.091, Nonlinear Anal. Theor. Meth. Appl. 71, e672 (2009)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv125n2126kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.