Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 2 | 445-448

Article title

Open Cell Aluminum Foams Produced by Polymer Impregnation Method

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this study, open cell aluminum foams were produced using the polymer impregnating method. This method consists of slurry preparation, template coating, drying, burning and finally sintering. Physical properties of the open cell aluminum foams were characterized. Microstructures were investigated utilizing optical and scanning electron microscopy. Cu K_{α} was used as X-ray source in phase analysis. The hardness of the foams was measured by applying Vickers hardness test. An ideal foam coating was achieved using the slurry having 60% solid content mixed with a speed of 1000 rpm for 3 h. The polyurethane foam was burned out at 500C and ideal sintering parameters were 620C for 4 or 7 h. The foam densities containing 60% solid were found to be 0.12-0.15 g/cm^3. The porosity values were calculated to be in the range of 94.4-95.5%. Micro hardness values were 30.3-34.7 Hv.

Keywords

EN

Year

Volume

125

Issue

2

Pages

445-448

Physical description

Dates

published
2014-02

Contributors

author
  • Department of Metallurgical and Materials Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
author
  • Department of Metallurgical and Materials Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey

References

  • 1. M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Metal Foams - A Design Guide, Elsevier Sci., USA 2000, p. 3, 44
  • 2. K.S. Chou, M.A. Song, doi: 10.1016/S1359-6462(01)01255-6, Scr. Mater. 46, 379 (2002)
  • 3. L. Montanaro, Y. Jorand, G. Fantozzi, A. Negro, doi: 10.1016/S0955-2219(98)00063-6, J. Eur. Ceram. Soc. 18, 1339 (1998)
  • 4. J. Luyten, S. Mullens, J. Cooymans, A.M. De Wilde, I. Thijs, R. Kemps, doi: 10.1016/j.jeurceramsoc.2008.07.039, J. Eur. Ceram. Soc. 29, 829 (2008)
  • 5. M.A. Nor, L.C. Hong, Z.A. Ahmad, H.M. Akil, doi: 10.1016/j.jmatprotec.2007.12.099, J. Mater. Proces. Technol. 207, 235 (2008)
  • 6. M. Dressler, S. Reinsch, R. Schadrack, S. Benemann, doi: 10.1016/j.jeurceramsoc.2009.07.025, J. Eur. Ceram. Soc. 29, 3333 (2009)
  • 7. K. Lemster, M. Delporte, M. Granule, T. Kueber, doi: 10.1016/j.ceramint.2006.04.002, Ceram. Inter. 33, 1179 (2006)
  • 8. S.C.P. Cachinho, R.N. Correia, doi: 10.1007/s10856-006-0052-7, J. Mater. Sci., Mater. Med. 19, 451 (2008)
  • 9. J. Zhao, X. Lu, J. Weng, doi: 10.1016/j.matlet.2008.01.075, Mater. Lett. 62, 2921 (2008)
  • 10. S. Ahmad, N. Muhamad, A. Muchtar, J. Sahari, K.R. Jamaludin, N.H.M. Nor, Int. J. Mech. Mat. Eng. 5, 244 (2010)
  • 11. J.H. Lee, H. Kim, Y.H. Koh, doi: 10.1016/j.matlet.2009.06.023, Mater. Lett. 63, 1995 (2009)
  • 12. S.C.P Cachinho, R.N. Correia, doi: 10.1016/j.powtec.2007.04.014, Powder Technol. 178, 109 (2007)
  • 13. J.P. Li, C.A.V. Blitterswijk, K. Groot, doi: 10.1023/B:JMSM.0000042680.10087.15, J. Mater. Sci., Mater. Med. 15, 951 (2004)
  • 14. J.P. Li, C.A.V. Blitterswijk, K. Groot, doi: 10.1002/jbm.a.30278, J. Biomed. Mater. Res. A 2, 223 (2005)
  • 15. N. Michailidis, F. Stergioudi, H. Omar, D.N. Tsipas, doi: 10.1016/j.mechmat.2009.10.006, Mech. Mater. 42, 142 (2009)
  • 16. J. Banhart, doi: 10.1007/s00770-999-0017-8, Europhys. News 30, 17 (1999)
  • 17. CEC, 2011, http://www.ergaerospace.com/Aluminum-properties.htm (2012)
  • 18. M.I. Idris, T. Vodenitcharova, M. Hoffman, doi: 10.1016/j.msea.2009.03.067, Mater. Sci. Eng. A 517, 37 (2009)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv125n2089kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.