PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 2 | 445-448
Article title

Open Cell Aluminum Foams Produced by Polymer Impregnation Method

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
In this study, open cell aluminum foams were produced using the polymer impregnating method. This method consists of slurry preparation, template coating, drying, burning and finally sintering. Physical properties of the open cell aluminum foams were characterized. Microstructures were investigated utilizing optical and scanning electron microscopy. Cu K_{α} was used as X-ray source in phase analysis. The hardness of the foams was measured by applying Vickers hardness test. An ideal foam coating was achieved using the slurry having 60% solid content mixed with a speed of 1000 rpm for 3 h. The polyurethane foam was burned out at 500C and ideal sintering parameters were 620C for 4 or 7 h. The foam densities containing 60% solid were found to be 0.12-0.15 g/cm^3. The porosity values were calculated to be in the range of 94.4-95.5%. Micro hardness values were 30.3-34.7 Hv.
Keywords
EN
Publisher

Year
Volume
125
Issue
2
Pages
445-448
Physical description
Dates
published
2014-02
Contributors
author
  • Department of Metallurgical and Materials Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
author
  • Department of Metallurgical and Materials Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
References
  • 1. M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Metal Foams - A Design Guide, Elsevier Sci., USA 2000, p. 3, 44
  • 2. K.S. Chou, M.A. Song, doi: 10.1016/S1359-6462(01)01255-6, Scr. Mater. 46, 379 (2002)
  • 3. L. Montanaro, Y. Jorand, G. Fantozzi, A. Negro, doi: 10.1016/S0955-2219(98)00063-6, J. Eur. Ceram. Soc. 18, 1339 (1998)
  • 4. J. Luyten, S. Mullens, J. Cooymans, A.M. De Wilde, I. Thijs, R. Kemps, doi: 10.1016/j.jeurceramsoc.2008.07.039, J. Eur. Ceram. Soc. 29, 829 (2008)
  • 5. M.A. Nor, L.C. Hong, Z.A. Ahmad, H.M. Akil, doi: 10.1016/j.jmatprotec.2007.12.099, J. Mater. Proces. Technol. 207, 235 (2008)
  • 6. M. Dressler, S. Reinsch, R. Schadrack, S. Benemann, doi: 10.1016/j.jeurceramsoc.2009.07.025, J. Eur. Ceram. Soc. 29, 3333 (2009)
  • 7. K. Lemster, M. Delporte, M. Granule, T. Kueber, doi: 10.1016/j.ceramint.2006.04.002, Ceram. Inter. 33, 1179 (2006)
  • 8. S.C.P. Cachinho, R.N. Correia, doi: 10.1007/s10856-006-0052-7, J. Mater. Sci., Mater. Med. 19, 451 (2008)
  • 9. J. Zhao, X. Lu, J. Weng, doi: 10.1016/j.matlet.2008.01.075, Mater. Lett. 62, 2921 (2008)
  • 10. S. Ahmad, N. Muhamad, A. Muchtar, J. Sahari, K.R. Jamaludin, N.H.M. Nor, Int. J. Mech. Mat. Eng. 5, 244 (2010)
  • 11. J.H. Lee, H. Kim, Y.H. Koh, doi: 10.1016/j.matlet.2009.06.023, Mater. Lett. 63, 1995 (2009)
  • 12. S.C.P Cachinho, R.N. Correia, doi: 10.1016/j.powtec.2007.04.014, Powder Technol. 178, 109 (2007)
  • 13. J.P. Li, C.A.V. Blitterswijk, K. Groot, doi: 10.1023/B:JMSM.0000042680.10087.15, J. Mater. Sci., Mater. Med. 15, 951 (2004)
  • 14. J.P. Li, C.A.V. Blitterswijk, K. Groot, doi: 10.1002/jbm.a.30278, J. Biomed. Mater. Res. A 2, 223 (2005)
  • 15. N. Michailidis, F. Stergioudi, H. Omar, D.N. Tsipas, doi: 10.1016/j.mechmat.2009.10.006, Mech. Mater. 42, 142 (2009)
  • 16. J. Banhart, doi: 10.1007/s00770-999-0017-8, Europhys. News 30, 17 (1999)
  • 17. CEC, 2011, http://www.ergaerospace.com/Aluminum-properties.htm (2012)
  • 18. M.I. Idris, T. Vodenitcharova, M. Hoffman, doi: 10.1016/j.msea.2009.03.067, Mater. Sci. Eng. A 517, 37 (2009)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n2089kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.