Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 2 | 435-438

Article title

2D Cellular Automata with an Image Processing Application

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper investigates the theoretical aspects of two-dimensional linear cellular automata with image applications. We consider geometrical and visual aspects of patterns generated by cellular automata evolution. The present work focuses on the theory of two-dimensional linear cellular automata with respect to uniform periodic and adiabatic boundary cellular automata conditions. Multiple copies of any arbitrary image corresponding to cellular automata find so many applications in real life situation e.g. textile design, DNA genetics research, etc.

Keywords

EN

Contributors

author
  • Department of Mathematics, Arts and Science Faculty, Harran University, Sanliurfa, 63120, Turkey
author
  • Multi Agent Biorobotic Laboratory, Rochester Institute of Technology, Rochester, NY, USA
author
  • Department of Mathematics, Yildiz Technical University, 34210, Istanbul, Turkey
author
  • Department of Mathematics, Education Faculty, Zirve University, 27260, Gaziantep, Turkey

References

  • 1. J. von Neumann, in: The Theory of Self-Reproducing Automata, Ed. A.W. Burks, Univ. of Illinois Press, Urbana 1966
  • 2. S. Wolfram, doi: 10.1103/RevModPhys.55.601, Rev. Mod. Phys. 55, 601 (1983)
  • 3. P.P. Choudhury, B.K. Nayak, S. Sahoo, S.P. Rath, Theory and Applications of Two-Dimensional, Null-Boundary, Nine-Neighborhood, Cellular Automata Linear Rules, Tech. Report No. ASD/2005/4, 13 May 2005, arXiv/0804.2346
  • 4. K. Dihidar, P.P. Choudhury, doi: 10.1016/j.ins.2003.09.024, Inf. Sci. 165, 91 (2004)
  • 5. H. Akın, doi: 10.1016/j.amc.2004.11.032, Appl. Math. Comput. 170, 339 (2005)
  • 6. H. Akın, I. Siap, doi: 10.1016/j.ipl.2007.02.002, Inf. Proc. Lett. 103, 24 (2007)
  • 7. P. Chattopadhyay, P.P. Choudhury, K. Dihidar, doi: 10.1016/S0898-1221(99)00227-8, Comput. Math. Appl. 38, 207 (1999)
  • 8. P.P. Choudhury, S. Sahoo, S.S. Hassan, S. Basu, D. Ghosh, D. Kar, Ab. Ghosh, Av. Ghosh, A.K. Ghosh, Int. J. Comp. Cogn. 8, 50 (2010)
  • 9. H. Akın, I. Siap, S. Uguz, doi: 10.1063/1.3525111, AIP Conf. Proc. 1309, 16 (2010)
  • 10. H.H. Chou, J.A. Reggia, doi: 10.1016/S0167-2789(97)00132-2, Physica D 110, 252 (1997)
  • 11. J. Gravner, G. Gliner, M. Pelfrey, doi: 10.1016/j.physd.2011.06.015, Physica D 240, 1460 (2011)
  • 12. I. Siap, H. Akın, S. Uguz, doi: 10.1016/j.camwa.2011.09.066, Comput. Math. Appl. 62, 4161 (2011)
  • 13. I. Siap, H. Akın, F. Sah, doi: 10.1016/j.jfranklin.2010.02.002, J. Frank. Inst. 348, 1258 (2011)
  • 14. I. Siap, H. Akın, F. Sah, doi: 10.1016/j.jfranklin.2010.02.002, Inf. Sci. 180, 3562 (2010)
  • 15. S. Uguz, H. Akın, I. Siap, doi: 10.1142/S0218127413501010, Int. J. Bifur. Chaos 23, 1350101 (2013)
  • 16. S. Uguz, H. Akın, I. Siap, Int. J. Bifur. Chaos 24, (2014), to be published

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv125n2086kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.