Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 2 | 325-326
Article title

The Promising Synthetic Route Hydrothermal Synthesis of Non-Stoichiometric Cerium and Boron Containing Compounds and Characterization

Title variants
Languages of publication
Cerium, the most abundant rare earth element, and boron containing mineral (lithium tetraborate pentahydrate) were used for synthesizing rare earth borates. Alternatively, for preparing rare earth borates, hydrothermal technique can be used. The non-stoichiometric cerium and boron containing compounds were synthesized by hydrothermal method using cerium sulphate and lithium tetraborate pentahydrate in appropriate molar ratio. Characterizations were done by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy/energy dispersive X-ray analysis, and thermogravimetric/differential thermal analysis.

Physical description
  • Balikesir University, Science and Art Faculty, Chemistry Department, Cagis Yerleskesi 10145 Balikesir, Turkey
  • Balikesir University, Science and Art Faculty, Chemistry Department, Cagis Yerleskesi 10145 Balikesir, Turkey
  • 1. V.N. Baumer, M.F. Dubovik, B.V. Grinyov, T.I. Korshikova, A.V. Tolmachev, A.N. Shekhovtsov, doi: 10.1016/j.radmeas.2004.03.028, Radiat. Measur. 38, 359 (2004)
  • 2. Y. Fujimoto, T. Yanagida, H. Tanaka, H. Yokota, N. Kawaguti, K. Fukuda, D. Totsuka, K. Watanabe, A. Yamazaki, A. Yoshikawa, doi: 10.1016/j.jcrysgro.2010.10.189, J. Cryst. Growth 318, 784 (2011)
  • 3. S.I. Hatamoto, T. Yamazaki, J. Hasegawa, M. Katsurayama, M. Oshika, Y. Anzai, doi: 10.1016/j.jcrysgro.2008.09.036, J. Cryst. Growth 311, 530 (2009)
  • 4. W.W. Moses, M.J. Weber, S.E. Derenzo, D. Perry, P. Berhadl, L. Schwarz, U. Sasum, L.A. Boather, in: Proc. SCINT'97, Eds: Y. Zhiwen, F. Xiqi, L. Peijun, X. Zhilin, Chinese Academy of Science Press, Shanghai 1997, p. 358
  • 5. L. Zhang, C. Madej, C. Pedrini, C. Dujardin, J.C. Gacon, B. Moine, I. Kamenskikh, A. Belsky, D.A. Shaw, M.A. Mac Donald, in Ref. [4], p. 303
  • 6. S.T. Lai, B. Chai, M. Long, R.C. Morris, doi: 10.1109/JQE.1986.1072898, J. Quantum Electron. 22, 1931 (1986)
  • 7. E.J. Popovici, M. Stefan, F. Lucaci, L. Muresan, E. Bica, E. Indrea, L. Tudoran, doi: 10.1016/j.phpro.2009.07.046, Phys. Procedia 2, 603 (2009)
  • 8. C. Feldmann, T. Justel, C. Ronda, P. Schmidt, doi: 10.1002/adfm.200301005, Adv. Funct. Mater. 13, 511 (2003)
  • 9. M. Li, M. Wang, Z. Liu, Y. Hu, J. Wu, doi: 10.1016/S1002-0721(08)60376-2, J. Rare Earths 27, 991 (2009)
  • 10. X. Zhang, H. Liu, W. He, J. Wang, X. Li, R. Boughton, doi: 10.1016/j.jallcom.2003.10.010, J. Alloys Comp. 372, 300 (2004)
  • 11. S. Bhattacharyya, S. Ghatak, doi: 10.1016/j.ceramint.2007.09.007, Ceram. Int. 35, 29 (2009)
  • 12. Y. Wu, J. Li, Y. Pan, Q. Liu, J. Guoa, doi: 10.1016/j.ceramint.2007.09.004, Ceram. Int. 35, 25 (2009)
  • 13. T. Tachiwaki, M. Yoshinaka, K. Hirota, T. Ikegami, O. Yamaguchi, doi: 10.1016/S0038-1098(01)00293-9, Solid State Commun. 119, 603 (2001)
  • 14. J.G. Li, T. Ikegami, J.H. Lee, T. Mori, doi: 10.1557/JMR.2000.0217, J. Mater. Res. 15, 1514 (2000)
  • 15. X. Li, H. Liu, J.Y. Wang, H.M. Cui, F. Han, X.D. Zhang, R.I. Boughton, doi: 10.1016/j.matlet.2004.02.011, Mater. Lett. 58, 2377 (2004)
  • 16. G. Gözel, A. Baykal, R. Kniep, doi: 10.1006/jssc.1996.7209, J. Solid State Chem. 129, 196 (1997)
  • 17. D.E.C. Corbridge, F.R. Tromans, doi: 10.1021/ac60138a031, Anal. Chem. 30, 1101 (1958)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.