Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 2 | 271-274
Article title

Effect of Thermal Annealing on the Sensitivity of Makrofol-DE Polycarbonate

Title variants
Languages of publication
Solid state nuclear track detectors have been applied in different studies including nuclear physics, particle physics, archaeology etc. Makrofol, a particular group of thermoplastic polymers, is used for radon detection. High background track numbers in the foils cause big uncertainties for places where the radon concentrations are quite low. Therefore, it is of great importance to lower the background track signal as much as possible, without reducing the sensitivity of the foils. The present study reports track density and sensitivity of Makrofol-DE after thermal annealing. The unexposed foils were heated at temperatures ranging from 110C to 140C for 10 min with the aim of observing changes in the number of background tracks. As a result a reduction in the background track density was observed. In order to observe the change in the sensitivity, pre-heated and unheated foils were exposed to alpha radiation in a radon chamber. At the temperatures of 110, 120, and 130°C, the track density in the heated and unheated exposed foils is quite similar. An increase was observed in the track density in heated exposed foils at 140C.
  • Physics Department, Faculty of Arts and Science, Uludag University, Gorukle Campus, 16059 Gorukle, Bursa, Turkey
  • Department of Subatomic and Radiation Physics, University of Gent, Proeftuinstr. 86, Gent B-9000, Belgium
  • Physics Department, Faculty of Arts and Science, Uludag University, Gorukle Campus, 16059 Gorukle, Bursa, Turkey
  • 1. L. Singh, K.S. Samra, doi: 10.1080/00222340701457493, J. Macromol. Sci., Part B: Phys. 46, 1041 (2007)
  • 2. N.K. Sood, T. Singh, A.S. Sandhu, L. Singh, doi: 10.1016/S1350-4487(99)00259-0, Radiat. Meas. 32, 79 (2000)
  • 3. H.A. Khan, doi: 10.1016/0029-554X(80)90567-4, Nucl. Instrum. Methods 173, 55 (1980)
  • 4. G. Meesen, A. Poffijn, J. Uyttenhove, J. Buysse, doi: 10.1016/1350-4487(95)00191-G, Radiat. Meas. 25, 591 (1995)
  • 5. M.A. Rana, I.E. Qureshi, S. Manzoor, E.U. Khan, M.I. Shahzad, G. Sher, doi: 10.1016/S0168-583X(01)00574-2, Nucl. Instrum. Methods Phys. Res. B 179, 249 (2001)
  • 6. R.L. Fleischer, P.B. Price, R.M. Walker, Nuclear Tracks in Solids: Principles and Applications, University of California Press, Berkeley 1975, p. 1
  • 7. G.S. Sekhon, S. Kumar, C. Kaur, N.K. Verma, S.K. Chakarvarti, doi: 10.1016/j.radmeas.2008.05.007, Radiat. Meas. 43, 1357 (2008)
  • 8. N.E. Ipe, P.L. Ziemer, doi: 10.1016/1359-0189(86)90003-8, Nucl. Tracks Radiat. Meas. 11, 137 (1986)
  • 9. P. Apel, doi: 10.1016/S1350-4487(01)00228-1, Radiat. Meas. 34, 559 (2001)
  • 10. S.M. Farid, J. Islam. Acad. Sci. 6, 168 (1993)
  • 11. R.K. Jain, G.S. Randhawa, S.K. Bose, H.S. Virk, doi: 10.1016/S0168-583X(98)00011-1, Nucl. Instrum. Methods Phys. Res. B 140, 367 (1998)
  • 12. D. Fink, S. Ghosh, R. Klett, K.K. Dwivedi, Y. Kobayashi, K. Hirata, J. Vacik, V. Hnatowicz, J. Cervena, L.T. Chadderton, doi: 10.1016/S0168-583X(98)00461-3, Nucl. Instrum. Methods Phys. Res. B 146, 486 (1998)
  • 13. (
  • 14. K. Neki, P.H. Geil, doi: 10.1080/00222347308245805, J. Macromol. Sci., Part B: Phys. 8, 295 (1973)
  • 15. A.L. Volynskii, T.E. Grokhovskaya, A.I. Kulebyakina, A.V. Bol'shakova, N.F. Bakeev, doi: 10.1134/S0965545X07110077, Polym. Sci., Ser. A 49, 1198 (2007)
  • 16. T. Wu, S. Lee, W. Chen, doi: 10.1021/ma00121a009, Macromolecules 28, 5751 (1995)
  • 17. Y. Minzi, Ph.D. Thesis, Case Western Reserve University, 1992
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.