PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 2 | 245-247
Article title

Impurity-Related Nonlinear Optical Absorption in Delta-Doped Quantum Rings

Content
Title variants
Languages of publication
EN
Abstracts
EN
Using a variational procedure within the effective mass approximation, we have calculated the hydrogenic impurity binding energy as well as the impurity-related nonlinear optical absorption in a single quantum ring with axial n-type delta-doping. The delta-like potential along the z-direction is analytically modeled with a Hartree-like confining profile fitted to a one-dimensional Thomas-Fermi-based potential in the local density approximation. Both on-center and on-edge impurity positions are considered and the energies of the impurity states are examined as functions of the vertical size of the ring. It is found that the effect of changes in the geometry of the quantum ring leads to a shifting of the resonant peaks of the intra-band optical spectrum.
Keywords
EN
Contributors
author
  • Física Teórica y Aplicada, Escuela de Ingeniería de Antioquia, AA 7516, Medellín, Colombia
  • Unidad Académica de Física, Universidad Autónoma de Zacatecas, CP 98060, México
author
  • Department of Solid State Physics, Yerevan State University, 0025 Yerevan, Armenia
author
  • Física Teórica y Aplicada, Escuela de Ingeniería de Antioquia, AA 7516, Medellín, Colombia
  • Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, CP 62209, México
  • Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
author
  • Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
References
  • 1. A.D. Yoffe, doi: 10.1080/00018730010006608, Adv. Phys. 50, 1 (2001)
  • 2. W. Xie, doi: 10.1016/j.physleta.2008.06.059, Phys. Lett. A 372, 5498 (2008)
  • 3. I. Karabulut, S. Baskoutas, doi: 10.1063/1.2904860, J. Appl. Phys. 103, 073512 (2008)
  • 4. W. Xie, doi: 10.1002/pssb.200844349, Phys. Status Solidi B 246, 1313 (2009)
  • 5. W. Xie, doi: 10.1088/0031-8949/85/05/055702, Phys. Scr. 85, 055702 (2012)
  • 6. G.H. Döhler, doi: 10.1016/0039-6028(78)90475-2, Surf. Sci. 73, 97 (1978)
  • 7. L. Ioratti, doi: 10.1103/PhysRevB.41.8340, Phys. Rev. B 41, 8340 (1990)
  • 8. L.M. Gaggero-Sager, doi: 10.1023/A:1019128332046, J. Math. Chem. 25, 317 (1999)
  • 9. M.E. Mora-Ramos, C.A. Duque, doi: 10.1016/j.physb.2013.02.003, Physica B 415, 72 (2013)
  • 10. J.M. Llorens, C. Trallero-Giner, A. García-Cristobal, A. Cantarero, doi: 10.1103/PhysRevB.64.035309, Phys. Rev. B 64, 035309 (2001)
  • 11. D. Ahn, S.-L. Chuang, doi: 10.1109/JQE.1987.1073280, IEEE J. Quantum Electron. QE23, 2196 (1987)
  • 12. N. Raigoza, A.L. Morales, A. Montes, N. Porras-Montenegro, C.A. Duque, doi: 10.1103/PhysRevB.69.045323, Phys. Rev. B 69, 045323 (2004)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n2025kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.