Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 2 | 174-176

Article title

Density of States in Thin Boron-Doped Microcrystalline Silicon Films Estimated from the Thermally Stimulated Conductivity Method

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this work, a series of boron-doped microcrystalline silicon samples [μc-Si:H(B)] were deposited by plasma-enhanced chemical vapor deposition, using silane (SiH_4) diluted in hydrogen, and diborane (B_2H_6) as a dopant gas. The concentration of B_2H_6 in SiH_4 was varied in the range of 0-100 ppm. The density of states was obtained from the thermally stimulated conductivity technique and compared with results obtained by the modulated photoconductivity methods. To explain the poor agreement between the density of states obtained from the thermally stimulated conductivity and the other methods, it is shown by means of numerical simulations that the density of states is very sensitive to experimental errors introduced in the calculation of the μ_{n}τ_{n} product (mobility of electron × lifetime of the electron). The thermally stimulated conductivity method is applied here for the first time to calculate the density of defect states in the forbidden band of μc-Si:H samples.

Keywords

EN

Contributors

author
  • Departamento de Fisica, Universidad Nacional de Colombia, Carrera 30, Calle 45, Bogota, Colombia
author
  • INTEC (UNL-CONICET), Güemes 3450, 3000 Santa Fe, Argentina
author
  • INTEC (UNL-CONICET), Güemes 3450, 3000 Santa Fe, Argentina

References

  • 1. S. Guessasma, M. Chahdi, doi: 10.1016/j.mssp.2004.09.009, Mater. Sci. Semicond. Proc. 7, 411 (2004)
  • 2. W.B. Jackson, A.J. Franz, H.-C. Jin, J.R. Abelson, J.L. Gland, doi: 10.1016/S0022-3093(98)00331-7, J. Non-Cryst. Solids 227-230, 143 (1998)
  • 3. S. Kugler, doi: 10.1016/j.jnoncrysol.2012.01.056, J. Non-Cryst. Solids 358, 2060 (2012)
  • 4. K. Mourgues, A. Rahal, T. Mohammed-Brahim, M. Sarret, J.P. Kleider, C. Longeaud, A. Bachrouri, A. Romano-Rodriguez, doi: 10.1016/S0022-3093(99)00937-0, J. Non-Cryst. Solids 266-269, 1279 (2000)
  • 5. A. Dussan, J.A. Schmidt, R.D. Arce, R.H. Buitrago, R.R. Koropecki, doi: 10.1016/S0040-6090Ž03.01403-2, Thin Solid Films 449, 180 (2004)
  • 6. A. Dussan, R.H. Buitrago, R.R. Koropecki, doi: 10.1016/j.mejo.2008.01.019, Microelectron. J. 39, 1292 (2008)
  • 7. C. Longeaud, J.A. Schmidt, R.R. Koropecki, doi: 10.1063/1.1469695, Phys. Rev. B 73, 235317 (2006)
  • 8. R.R. Koropecki, J.A. Schmidt, R. Arce, doi: 10.1063/1.1469695, J. Appl. Phys 91, 8965 (2002)
  • 9. C. Longeaud, J.P. Kleider, P. Kaminski, R. Kozlowski, M. Miczuga, doi: 10.1088/0953-8984/21/4/045801, J. Phys., Condens. Matter 21, 045801 (2009)
  • 10. G.E.N. Landweer, J. Bezemer, in: Amorphous Silicon and Related Materials, Advances in Disordered Semiconductors 1, Ed. H. Fritzsche, World Sci., Singapore 1989, p. 525
  • 11. J.A. Schmidt, R.R. Koropecki, R. Arce, A. Dussan, R.H.V. Buitrago, doi: 10.1016/j.jnoncrysol.2004.02.065, J. Non-Cryst. Solids 338-340, 322 (2004)
  • 12. S.B. Concari, R.H. Buitrago, M.T. Gutierrez, J.J. Gandia, doi: 10.1063/1.1593215, J. Appl. Phys. 94, 2417 (2003)
  • 13. M. Zhu, M.B. von der Linden, J. Bezemer, R.E.I. Schropp, W.F. van der Weg, doi: 10.1016/S0022-3093(05)80129-2, J. Non-Cryst. Solids 137, 355 (1991)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv125n2002kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.