Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 2 | 174-176
Article title

Density of States in Thin Boron-Doped Microcrystalline Silicon Films Estimated from the Thermally Stimulated Conductivity Method

Title variants
Languages of publication
In this work, a series of boron-doped microcrystalline silicon samples [μc-Si:H(B)] were deposited by plasma-enhanced chemical vapor deposition, using silane (SiH_4) diluted in hydrogen, and diborane (B_2H_6) as a dopant gas. The concentration of B_2H_6 in SiH_4 was varied in the range of 0-100 ppm. The density of states was obtained from the thermally stimulated conductivity technique and compared with results obtained by the modulated photoconductivity methods. To explain the poor agreement between the density of states obtained from the thermally stimulated conductivity and the other methods, it is shown by means of numerical simulations that the density of states is very sensitive to experimental errors introduced in the calculation of the μ_{n}τ_{n} product (mobility of electron × lifetime of the electron). The thermally stimulated conductivity method is applied here for the first time to calculate the density of defect states in the forbidden band of μc-Si:H samples.
Physical description
  • 1. S. Guessasma, M. Chahdi, doi: 10.1016/j.mssp.2004.09.009, Mater. Sci. Semicond. Proc. 7, 411 (2004)
  • 2. W.B. Jackson, A.J. Franz, H.-C. Jin, J.R. Abelson, J.L. Gland, doi: 10.1016/S0022-3093(98)00331-7, J. Non-Cryst. Solids 227-230, 143 (1998)
  • 3. S. Kugler, doi: 10.1016/j.jnoncrysol.2012.01.056, J. Non-Cryst. Solids 358, 2060 (2012)
  • 4. K. Mourgues, A. Rahal, T. Mohammed-Brahim, M. Sarret, J.P. Kleider, C. Longeaud, A. Bachrouri, A. Romano-Rodriguez, doi: 10.1016/S0022-3093(99)00937-0, J. Non-Cryst. Solids 266-269, 1279 (2000)
  • 5. A. Dussan, J.A. Schmidt, R.D. Arce, R.H. Buitrago, R.R. Koropecki, doi: 10.1016/S0040-6090Ž03.01403-2, Thin Solid Films 449, 180 (2004)
  • 6. A. Dussan, R.H. Buitrago, R.R. Koropecki, doi: 10.1016/j.mejo.2008.01.019, Microelectron. J. 39, 1292 (2008)
  • 7. C. Longeaud, J.A. Schmidt, R.R. Koropecki, doi: 10.1063/1.1469695, Phys. Rev. B 73, 235317 (2006)
  • 8. R.R. Koropecki, J.A. Schmidt, R. Arce, doi: 10.1063/1.1469695, J. Appl. Phys 91, 8965 (2002)
  • 9. C. Longeaud, J.P. Kleider, P. Kaminski, R. Kozlowski, M. Miczuga, doi: 10.1088/0953-8984/21/4/045801, J. Phys., Condens. Matter 21, 045801 (2009)
  • 10. G.E.N. Landweer, J. Bezemer, in: Amorphous Silicon and Related Materials, Advances in Disordered Semiconductors 1, Ed. H. Fritzsche, World Sci., Singapore 1989, p. 525
  • 11. J.A. Schmidt, R.R. Koropecki, R. Arce, A. Dussan, R.H.V. Buitrago, doi: 10.1016/j.jnoncrysol.2004.02.065, J. Non-Cryst. Solids 338-340, 322 (2004)
  • 12. S.B. Concari, R.H. Buitrago, M.T. Gutierrez, J.J. Gandia, doi: 10.1063/1.1593215, J. Appl. Phys. 94, 2417 (2003)
  • 13. M. Zhu, M.B. von der Linden, J. Bezemer, R.E.I. Schropp, W.F. van der Weg, doi: 10.1016/S0022-3093(05)80129-2, J. Non-Cryst. Solids 137, 355 (1991)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.