Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 2 | 171-173
Article title

On the Validity of Diffusional Model in Determination of Electric Transport Parameters of Semiconductor Compound

Title variants
Languages of publication
In this work we have studied the variable range hopping as a predominant electronic transport mechanism for semiconductor materials used as absorbent layer in photovoltaic devices. Dark conductivity measurements were carried out from 120 to 420 K in Si, Cu_3BiS_3, SnS, Cu_2ZnSnSe_4, and CuInGaSe_2 thin films. In the low-temperature range, variational range hopping was established for all samples. Using classical equations from the percolation theory and the diffusional model, the density of states near the Fermi level (N_{F}), as well as the hopping parameters (W - activation energy and R - hopping range) were calculated. A correlation between both models allowed us to evaluate the validity of the diffusional model in semiconductor compounds.
  • Departamento de Fisica, Universidad Nacional de Colombia, Carrera 30, Calle 45, Bogota, Colombia
  • Departamento de Fisica, Universidad Nacional de Colombia, Carrera 30, Calle 45, Bogota, Colombia
  • Departamento de Ciencias B├ísicas, Universidad Libre, Bogota, Colombia
  • 1. P.-W. Li, W.-H. Zhou, Z.-L. Hou, S.-X. Wu, doi: 10.1016/j.matlet.2012.03.058, Mater. Lett. 78, 131 (2012)
  • 2. F. Mesa, A. Dussan, J. Sandino, H. Lichte, doi: 10.1007/s11051-012-1054-7, J. Nanopart. Res. 14, 1054 (2012)
  • 3. C.Z. Wang, C.J. Zhu, T.W. Zhang, J. Li, doi: 10.1016/j.vacuum.2012.11.008, Vacuum 92, 7 (2013)
  • 4. E. Pineda, M.E. Nicho, P.K. Nair, H.L. Hu, doi: 10.1016/j.solener.2011.06.015, Solar Energy 86, 1017 (2012)
  • 5. A. Dussan, H.P. Quiroz, J.G.A. Martinez, doi: 10.1016/j.solmat.2011.04.025, Solar En. Mater. Solar Cells 100, 53 (2012)
  • 6. S. Gall, C. Becker, E. Conrad, P. Dogan, F. Fenske, B. Gorka, K.Y. Lee, B. Rau, F. Ruske, B. Rech, H, doi: 10.1016/j.solmat.2008.11.029, Solar En. Mater. Solar Cells 93, 1004 (2009)
  • 7. A. Dussan, R.H. Buitrago, doi: 10.1063/1.1848193, J. Appl. Phys. 97, 043711 (2005)
  • 8. F. Mesa, C. Calderon, G. Gordillo, doi: 10.1016/j.tsf.2009.09.028, Thin Solid Films 518, 1764 (2010)
  • 9. S.-Y. Lee, W.J. Lee, C.W. Nahm, J.M. Kim, S.J. Byun, T.H. Hwang, B.-K. Lee, Y.I. Jang, S.G. Lee, H.-M. Lee, B.W. Park, doi: 10.1016/j.cap.2012.12.003, Curr. Appl. Phys. 13, 775 (2013)
  • 10. N. Parvathala Reddy, Rajeev Gupta, S.C. Agarwal, doi: 10.1016/j.jnoncrysol.2013.01.011, J. Non-Cryst. Solids 364, 69 (2013)
  • 11. C.-H. Lin, G.Y. Wu, doi: 10.1016/S0040-6090(01)01402-X, Thin Solid Films 397, 280 (2001)
  • 12. N.F. Mott, doi: 10.1080/14786436908216338, Philos. Mag. 19, 333 (1969)
  • 13. A. Dussan, F. Mesa, M. Botero, G. Gordillo, doi: 10.1088/1742-6596/167/1/012018, J. Phys., Conf. Series 167, 012018 (2009)
  • 14. M.-L. Liu, F.-Q. Huang, L.-D. Chen, I-W. Chen, doi: 10.1063/1.3130718, Appl. Phys. Lett. 94, 202103 (2009)
  • 15. M. Thamilselvan, K. Premnazeer, D. Mangalaraj, Sa.K. Narayandass, doi: 10.1016/S0921-4526(03)00444-7, Physica B 337, 404 (2003)
  • 16. M.H. Lee, C.W. Tai, J.J. Huang, doi: 10.1016/j.sse.2012.10.006, Solid-State Electron. 80, 72 (2013)
  • 17. S.S. Babkair, A.A. Ansari, N.M. Al-Twarqi Depa, doi: 10.1016/j.matchemphys.2011.02.008, Mater. Chem. Phys. 127, 296 (2011)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.