Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 1 | 105-110

Article title

Hydrothermal Synthesis and Microstructural, Optical Properties Characterization of YVO_4 Phosphor Powder

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The phonon energy of YVO_4 crystal is lower than other usual compounds of salt. So it is suitable as host material for down-conversion materials. Hydrothermal method was adopted to synthesize YVO_4 phosphor powder with the use of yttrium oxide and sodium vanadate as raw material. The change in the relative integral intensity of the (200) and (112) diffraction peaks indicates that macroscopic stress in the lattice obviously changes with the elevated hydrothermal reaction temperature. The YVO_4 phosphor powder synthesized involves a certain agglomeration of small particles. The phonon vibration in the YVO_4 originates mainly from the internal vibrations in the vanadium-oxygen tetrahedron, in addition to the Y-O and O-H vibrations. Due to a low phonon energy of only 2.8188 × 10^{-21} J, YVO_4 helps to improve the down-conversion efficiency of rare-earth ions. A bandgap value of approximately 3.8 eV for the synthesized YVO_4 powders leads to good absorption properties in the ultraviolet region. Upon excitation by the 320 nm ultraviolet photon, the intrinsic emission of YVO_4 powders is annihilated, and a broadband emission of VO_4^{3-} near 450 nm is observed at room temperature. The YVO_4 phosphor powder synthesized at 180C exhibits the maximum photoluminescence intensity because of its excellent crystallization.

Keywords

EN

Contributors

author
  • Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Engineering, Zhengzhou University, 450052 Zhengzhou, China
author
  • College of Information Science and Engineering, Henan University of Technology, 450001 Zhengzhou, China
author
  • Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Engineering, Zhengzhou University, 450052 Zhengzhou, China
author
  • Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Engineering, Zhengzhou University, 450052 Zhengzhou, China

References

  • [1] A.K. Levine, F.C. Palilla, doi: 10.1063/1.1723611, Appl. Phys. Lett. 5, 118 (1964)
  • [2] H.J. Zhang, X.L. Meng, L. Zhu, P. Wang, X.S. Liu, Z.H. Yang, J. Dawes, P. Dekker, doi: 10.1002/(SICI)1521-396X(199910)175:2<705::AID-PSSA705>3.0.CO;2-N, Phys. Status Solidi A 175, 705 (1999)
  • [3] A.R. Forbes, C.D. McMillen, H.G. Giesber, J.W. Kolis, doi: 10.1016/j.jcrysgro.2008.06.067, J. Cryst. Growth 310, 4472 (2008)
  • [4] X.Y. Huang, Ph.D. Thesis, South China University of Technology, Guangzhou 2011 (in Chinese)
  • [5] P. Würfel, doi: 10.1016/S1386-9477(02)00355-7, Physica E 14, 18 (2002)
  • [6] L. Aarts, B. van der Ende, M.F. Reid, A. Meijerink, doi: 10.1080/00387010.2010.486731, Spectrosc. Lett. 43, 373 (2010)
  • [7] Z.H. Xu, X.J. Kang, C.X. Li, Z.Y. Hou, C.M. Zhang, D.M. Yang, G.G. Li, J. Lin, doi: 10.1021/ic100953m, Inorg. Chem. 49, 6706 (2010)
  • [8] X.Y. Huang, J.X. Wang, D.C. Yu, S. Ye, Q.Y. Zhang, X.W. Sun, doi: 10.1063/1.3592889, J. Appl. Phys. 109, 113526 (2011)
  • [9] H.Y. Xu, L. Jia, S.L. Xu, X.D. Li, H. Wang, H. Yan, Acta Chim. Sinica 63, 612 (2005) (in Chinese)
  • [10] X.Y. Huang, D.C. Yu, Q.Y. Zhang, doi: 10.1063/1.3267484, J. Appl. Phys. 106, 113521 (2009)
  • [11] K.Y. Li, R.Z. Wang, M.H. Qu, Y. Zhang, H. Yan, doi: 10.3788/fgxb20123305.0486, Chin. J. Lumin. 33, 486 (2012)
  • [12] X.Y. Huang, Q.Y. Zhang, doi: 10.1063/1.3088890, J. Appl. Phys. 105, 053521 (2009)
  • [13] X.C. Mi, Y.Y. Chen, Z.J. Wu, X.H. Liu, S.Y. Yang, L.C. Zhang, PARTA: Phys. Test. 40, 181 (2004) (in Chinese)
  • [14] X.Y. Fan, S.M. Ma, China Ceram. Indust. 9, 43 (2002) (in Chinese)
  • [15] X.Y. Gao, X.W. Liu, H.L. Feng, J.X. Lu, J. Zhengzhou Univ. (Nat. Sci. Ed.) 42, 51 (2010) (in Chinese)
  • [16] B. Jin, S. Erdei, A.S. Bhalla, F.W. Ainger, doi: 10.1016/0167-577X(94)00262-2, Mater. Lett. 22, 281 (1995)
  • [17] B.M. Jin, S. Erdei, A.S. Bhalla, F.W. Ainger, doi: 10.1016/0025-5408(95)00126-3, Mater. Res. Bull. 30, 1293 (1995)
  • [18] J. Wang, Y.H. Xu, M. Hojamberdiev, J.H. Peng, G.Q. Zhu, doi: 10.1016/j.jnoncrysol.2009.04.013, J. Non-Cryst. Solids 355, 903 (2009)
  • [19] M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H.J. Zhang, Y.C. Han, doi: 10.1021/cm011663y, Chem. Mater. 14, 2224 (2002)
  • [20] L. Kovács, S. Erdei, R. Capelletti, doi: 10.1016/S0038-1098(99)00165-9, Solid State Commun. 111, 95 (1999)
  • [21] H. Ronde, G. Blasse, doi: 10.1016/0022-1902(78)80113-4, J. Inorg. Nucl. Chem. 40, 215 (1978)
  • [22] G. Blasse, Philips Res. Rept. 24, 131 (1969)
  • [23] C. Hsu, R.C. Powell, doi: 10.1016/0022-2313(75)90051-4, J. Lumin. 10, 273 (1975)
  • [24] V. Pankratov, L. Grigorjeva, D. Millers, H.M. Yochum, doi: 10.1002/pssc.200673833, Phys. Status Solidi C 4, 801 (2007)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv125n120kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.