Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 1 | 87-92

Article title

Morphology, Optical and AC Electrical Properties of Copper Phthalocyanine Thin Films

Content

Title variants

Languages of publication

EN

Abstracts

EN
AC electrical properties of sandwich devices composed of thermally evaporated thin films of copper phthalocyanine (CuPc) with aluminum and gold electrodes (Al/CuPc/Au) are investigated over frequency (f) range of 10^2 - 10^5 Hz and temperature range of 293-453 K. Morphology of the samples was studied via field emission scanning electron microscope images and X-ray diffraction micrographs. The X-ray diffraction micrograph indicates the configuration of α-CuPc with the (510) plane as the preferred orientation. UV-Vis absorption spectrum was analyzed and the optical band-gap energy of CuPc thin film was determined to be 2.81 ± 0.01 eV. Capacitance increased with increasing temperature especially for f = 10^2 Hz. Loss factor decreased considerably with increasing frequency to a minimum value at about f = 10^4 Hz and increased afterwards. Capacitance is generally independent of frequency for T ≤ 413 K; however it decreases remarkably with increasing frequency for T > 413 K. The conductivity increases quite noticeably with increasing frequency particularly for T ≤ 413 K. The AC electrical characteristics are in good agreement with Goswami and Goswami model. According to our data, at high temperatures, the band theory is applicable in describing the conduction process, whereas hopping mechanism is dominant at low temperatures.

Keywords

Contributors

  • Applied Physics Division, Physics Department, Kharazmi University, 43 Mofateh Av., Tehran, Iran
  • Applied Physics Division, Physics Department, Kharazmi University, 43 Mofateh Av., Tehran, Iran
author
  • Applied Physics Division, Physics Department, Kharazmi University, 43 Mofateh Av., Tehran, Iran

References

  • [1] C.J. Liu, J.J. Shih, Y.H. Ju, doi: 10.1016/j.snb.2003.11.034, Sens. Actuators B 99, 344 (2004)
  • [2] T. Basova, A. Tsargorodskaya, A. Nabok, A.K. Hassan, A.G. Gurek, G. Gumus, V. Ahsen, doi: 10.1016/j.msec.2008.07.020, Mater. Sci. Eng. C 29, 814 (2009)
  • [3] A.K. Abass, R.A. Collins, A. Krier, doi: 10.1016/0022-3697(93)90272-S, J. Phys. Chem. Solids 54, 375 (1993)
  • [4] W. Chao, X. Zhang, C. Xiao, D. Liang, Y. Wang, doi: 10.1016/j.jcis.2008.05.021, J. Colloid Interface Sci. 325, 198 (2008)
  • [5] J. Wang, W.J. Blau, doi: 10.1007/s00340-008-2999-1, Appl. Phys. B 91, 521 (2008)
  • [6] E.M. El-Menyawy, H.M. Zeyada, M.M. El-Nahass, doi: 10.1016/j.solidstatesciences.2010.10.001, Solid State Sci. 12, 2182 (2010)
  • [7] F. Yakuphanoglu, M. Arslan, doi: 10.1016/j.ssc.2004.07.038, Solid State Commun. 132, 229 (2004)
  • [8] A. Krier, M.E. Azim-Araghi, doi: 10.1016/S0022-3697(96)00193-X, J. Phys. Chem. Solids 58, 711 (1997)
  • [9] M.E. Azim-Araghi, M.J. Jafari, doi: 10.1051/epjap/2010133, Eur. Phys. J. Appl. Phys. 52, 10402 (2010)
  • [10] M.E. Azim-Araghi, E. Karimi-Kerdabadi, M.J. Jafari, doi: 10.1051/epjap/2011100376, Eur. Phys. J. Appl. Phys. 55, 30203 (2011)
  • [11] M.M. El-Nahass, F.S. Bahabri, A.A. Al-Ghamdi, S.R. Al-Harbi, Egypt. J. Sol. 25, 307321 (2002)
  • [12] H.S. Lee, M.W. Cheon, Y.P. Park, doi: 10.4313/TEEM.2011.12.1.40, Trans. Electr. Electron. Mater. 12, 40 (2011)
  • [13] M.I. Newton, T.K.H. Starke, G. McHale, M.R. Willis, doi: 10.1016/S0040-6090(99)00870-6, Thin Solid Films 360, 10 (2000)
  • [14] Y.L. Lee, C.Y. Hsiao, R.H. Hsiao, doi: 10.1016/j.tsf.2004.04.060, Thin Solid Films 468, 280 (2004)
  • [15] A. Oprea, U. Weimar, E. Simon, M. Fleischer, H.P. Frerichs, Ch. Wilbertz, M. Lehmann, doi: 10.1016/j.snb.2006.04.054, Sens. Actuators B 118, 249 (2006)
  • [16] A.K. Hassan, R.D. Gould, doi: 10.1088/0953-8984/1/37/014, J. Phys., Condens. Matter 1, 6679 (1989)
  • [17] M.T. Robinson, G.E. Klein, doi: 10.1021/ja01144a520, J. Am. Chem. Soc. 74, 6294 (1952)
  • [18] B.B. He, Two-dimensional X-ray Diffraction, Wiley Hoboken, NJ 2009, p. 191
  • [19] A.K. Hassan, R.D. Gould, doi: 10.1002/pssa.2211320110 , Phys. Status Solidi A 132, 91 (1992)
  • [20] M.J. Stillman, T.N. Nyokong, in: Phthalocyanines: Properties and Applications, Vol. 1, Eds. C.C. Lenznoff, A.B.P. Lever, VCH, New York 1989, Ch 3, p. 133
  • [21] S.B. Brown, Introduction to Spectroscopy for Biochemistry, Academic Press, London 1980
  • [22] S. Mathew, C. Sudarsanakumar, C.S. Menon, Optoelectron. Adv. Mater.-Rapid Commun. 1, 614 (2007)
  • [23] M.E. Azim-Araghi, D. Campbell, A. Krier, R.A. Collins, doi: 10.1088/0268-1242/11/1/010, Semicond. Sci. Technol. 11, 39 (1996)
  • [24] M.E. Azim-Araghi, Indian J. Pure Appl. Phys. 45, 40 (2007)
  • [25] P.J Harrop, D.S. Campbell, in: Handbook of Thin Film Technology, Eds. L.I. Maissel, R. Glang, McGraw Hill, New York 1983, Ch. 16, p. 16
  • [26] H.R. Kerp, K.T. Westerdui, A.T. van Veen, E.E. van Faasseu, doi: 10.1557/JMR.2001.0073, J. Mater. Res. 16, 503 (2001)
  • [27] J.D. Wright, doi: 10.1016/0079-6816(89)90012-9, Prog. Surf. Sci. 31, 1 (1989)
  • [28] A. Goswami, A.P. Goswami, doi: 10.1016/0040-6090(73)90166-1, Thin Solid Films 16, 175 (1973)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv125n117kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.