PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 1 | 67-72
Article title

Dielectric and Ac Conductivity Studies of Mn-Doped Na_{1.86}Li_{0.10}K_{0.04}Ti_3O_7 Ceramics

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Dielectric-spectroscopic and ac conductivity studies on 0.01 and 1.0 molar percentage manganese doped layered Na_{1.86}Li_{0.10}K_{0.04}Ti_3O_7 ceramics have been reported. The dependence of loss tangent (tan δ) and relative permittivity (ε_{r}) on temperature in the range 350-775 K and on frequency in the range 10 kHz-1 MHz have been undertaken. The losses are the characteristics of dipole mechanism, electrical conduction and space charge polarization. The obtained conductivity plots between log(σ_{ac}T) versus 1000/T have been divided into four regions namely region I, II, III, and IV. The mechanism of conduction in region I is acknowledged to electronic hopping conduction. The less frequency and more temperature dependent region II is ascribed as a mixed mechanism "associated interlayer ionic conduction, electron hopping, and alkali ion hopping conduction". The unassociated interlayer ionic conduction along with alkali ion hopping conduction mechanisms are contributing to the transport process in the mid temperature region III. The mechanism of conduction in the highest temperature region IV may be recognized as the modified interlayer ionic conduction. The conductivity versus frequency curves lead to conclude that the electronic hopping conduction diminishes with the rise of temperature.
Keywords
Contributors
author
  • Department of Physics, P.P.N. College, Kanpur-208001, India
author
  • Department of Physics, P.P.N. College, Kanpur-208001, India
References
  • [1] L. Viciu, V. Golub, J. Wiley, doi: 10.1016/S0022-4596(03)00186-5, J. Solid State Chem. 175, 88 (2003)
  • [2] R. Seshadri, C. Martin, M. Herin, B. Raveau, C. Rao, doi: 10.1021/cm960342x, Chem. Mater. 9, 270 (1997)
  • [3] A. Fujishima, K. Honda, doi: 10.1038/238037a0, Nature 238, 37 (1972)
  • [4] G. Dagon, M. Tomkiewicz, doi: 10.1021/j100151a001, J. Phys. Chem. 97, 12651 (1993)
  • [5] A. Verbaere, M. Tournoux, Bull. Soc. Chim. France 4, 1237 (1973)
  • [6] M. Dion, Y. Piffard, M. Tournoux, doi: 10.1016/0022-1902(78)80175-4, J. Inorg. Nucl. Chem. 40, 917 (1978)
  • [7] A. Kudo, T. Sakata, doi: 10.1039/JM9930301081, J. Mater. Chem. 3, 1081 (1993)
  • [8] A. Kudo, T. Kondo, doi: 10.1039/A606297K, J. Mater. Chem. 7, 777 (1997)
  • [9] M. Shabita, A. Kudo, A. Tanaka, K. Maruya, T. Onishi, doi: 10.1246/cl.1987.1017, Chem. Lett. 6, 1017 (1987)
  • [10] S. Anderson, A.D. Wadsley, doi: 10.3891/acta.chem.scand.15-0663, Acta Chem. Scand. 15, 663 (1961)
  • [11] M. Koizumi, S. Yoshikawa, H. Izawa, Japan Patent Kukai Tokkyo Koho JP 62, 100411 (1987)
  • [12] T. Sasaki, M. Watanabe, Y. Konatsu, Y. Fujiki, doi: 10.1021/ic00208a028, Inorg. Chem. 24, 2265 (1985)
  • [13] M. Sugita, M. Tsuji, M. Abe, doi: 10.1246/bcsj.63.1978, Bull. Chem. Soc. Jpn. 63, 1978 (1990)
  • [14] N. Miyamoto, K. Kuroda, M. Ogawa, doi: 10.1021/jp035617s, J. Phys. Chem. B 108, 4268 (2004)
  • [15] M. Holzinger, A. Benisek, W. Schnellelle, E. Gmelin, J. Maier, W. Sitte, doi: 10.1016/S0021-9614(03)00125-3, J. Chem. Thermodyn. 35, 1469 (2003)
  • [16] G. Yuyan, Ph.D. Thesis, Texas A & M University, USA 2006
  • [17] Shripal, D. Maurya, Shalini, J. Kumar, doi: 10.1016/j.mseb.2006.06.031, Mater. Sci. Eng. B 136, 5 (2007)
  • [18] Shripal, S. Badhwar, D. Maurya, J. Kumar, R.P. Tandon, in: Advances in Condens. Matter Physics, Ed. K.K. Raina, Allied Publisher, New Delhi 2005, p. 250
  • [19] Shripal, S. Badhwar, Shalini, R.P. Tandon, in: Advances in Technologically Important Crystals, Eds. B. Kumar, R.P. Tandon, Macmillan India Ltd., New Delhi 2006, p. 628
  • [20] S. Badhwar, D. Maurya, R. Bilas, Shripal, in: Proc. DAE Solid State Physics Symp., Eds. V.K. Aswal, H.G. Salunke, J.V. Yakhmi, Prime Time Education, Mumbai 2005, p. 709
  • [21] D. Maurya, J. Kumar, Shripal, doi: 10.1016/j.jpcs.2005.05.080, J. Phys. Chem. Solids 66, 1614 (2005)
  • [22] Shripal, L.N. Pandey, D.C. Dwivedi, R. Singh, R.P. Tandon, doi: 10.1080/10584587.2010.503800, Integrat. Ferroelectr. 120, 28 (2010)
  • [23] Shripal, Geetika, R. Singh, R.P. Tandon, doi: 10.1080/10584587.2010.503799, Integrat. Ferroelectr. 120, 18 (2010)
  • [24] Shripal, S. Dwivedi, R. Singh, R.P. Tandon, doi: 10.1142/S0217979213501142, Int. J. Mod. Phys. B 27, 1350144-1(2013)
  • [25] Shripal, R. Singh, Geetika, R.K. Shukla, K.K. Raina, doi: 10.1142/S2010135X11000537, J. Adv. Dielectr. 4, 429 (2011)
  • [26] P. Senguttuvan, G. Rousse, V. Seznec, J.M. Tarascon, M.R. Palacín, doi: 10.1021/cm202076g, Chem. Mater. 23, 4109 (2011)
  • [27] A. Rudola, K. Saravanan, C.W. Mason, P. Balaya, doi: 10.1039/C2TA01057G, J. Mater. Chem. A 1, 2653 (2013)
  • [28] B.P. Das, R.N.P. Chaudhary, P.K. Mahapatra, doi: 10.1016/S0921-5107(03)00311-8, Mater. Sci. Eng. B 104, 96 (2003)
  • [29] N.P. Bogoroditsky, V.V. Pasynkov, B. Tareev, Electrical Engineering Materials, Mir Pub., Moscow 1979
  • [30] B. Tareev, Physics of Dielectric Materials, Mir Pub., Moscow 1979
  • [31] V. Langwal, B.S. Semwal, N.S. Panwar, doi: 10.1007/BF02704326, Bull. Mater. Sci. 26, 619 (2003)
  • [32] R. Singh, Ph.D. Thesis, C.S.J.M. University, India 2012
  • [33] G. Austin, N.F. Mott, doi: 10.1080/00018736900101267, Adv. Phys. 18, 41 (1969)
  • [34] M. Pollack, doi: 10.1080/14786437108216402, Philos. Mag. 23, 519 (1971)
  • [35] M. Bottger, V.V. Breyksin, doi: 10.1002/pssb.2220780202, Phys. Status Solidi 9, 79 (1976)
  • [36] S.D. Pandey, R.K. Sharma, Shripal, in: Proc. Fifth Asia Pacific Conf., Eds. S.P. Chia, K.S. Low, M. Othman, C.S. Wong, A.C. Chew, S.P. Moo, World Sci., Singapore 1992, p. 866
  • [37] J.C. Dyre, B.S. Thomas, doi: 10.1103/RevModPhys.72.873, Rev. Mod. Phys. 72, 873 (2000)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n113kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.