Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 1 | 54-59

Article title

First-Principles Study of the Structural, Elastic, and Mechanical Properties of Ni_3Ga Compound under Pressure

Content

Title variants

Languages of publication

EN

Abstracts

EN
There was employed the density functional theory plane-wave pseudopotential method with local density approximation and generalized gradient approximation to investigate the structural, elastic and mechanical properties of the intermetallic compound Ni_3Ga. The calculated equilibrium lattice constant and bulk modulus are in good agreement with the experimental values. The elastic constants were determined from a linear fit of the calculated stress-strain function according to Hooke's law. From the elastic constants, the bulk modulus B, anisotropy factor A, shear modulus G, Young's modulus E and Poisson's ratio υ for Ni_3Ga compound are obtained. Our results for the bulk modulus B, anisotropy factor A, shear modulus G, Young's modulus E and Poisson's ratio υ are consistent with the experimental values. The sound velocities and the Debye temperature are also predicted from elastic constants. The dependences of the elastic and mechanical properties of Ni_3Ga compound on pressure were investigated for the first time. It was found that the cubic Ni_3Ga compound is mechanically stable according to the elastic stability criteria and it is not elastically isotropic. By analyzing the ratio B/G, it was concluded that Ni_3Ga compound is ductile in nature.

Keywords

Contributors

author
  • Université Ferhat Abbas, Laboratoire d'Elaboration de Nouveaux Matériaux et Caractérisations (ENMC), Département de Physique, 19000, Sétif, Algeria
author
  • Université Ferhat Abbas, Faculté des Sciences, Département de Physique, 19000, Sétif, Algeria

References

  • [1] J.H. Westbrook, R.L. Fleischer, Intermetallic Compounds-Principles and Practices, Wiley, New York 1995
  • [2] D. Iotova, N. Kioussis, S.P. Lim, doi: 10.1103/PhysRevB.54.14413, Phys. Rev. B 54, 14413 (1996)
  • [3] G.Y. Guo, Y.K. Wang, L.S. Hsu, doi: 10.1016/S0304-8853(01)00564-9, J. Magn. Magn. Mater. 239, 91 (2002)
  • [4] A. Aguao, I.I. Mazin, D.J. Singh, doi: 10.1103/PhysRevLett.92.147201, Phys. Rev. Lett. 92, 147201 (2004)
  • [5] L.S. Hsu, R.S. Wiliams, doi: 10.1016/0022-3697(94)90226-7, J. Phys. Chem. Solids 55, 305 (1994)
  • [6] A.N. Mansour, A. Dmitrienko, A.V. Soldatov, doi: 10.1103/PhysRevB.55.15531, Phys. Rev. B 37, 15531 (1997)
  • [7] Y.K. Cheng, K.P. Lin, W.F. Pong, M.-H. Tsai, H.H. Hseih, J.Y. Pieh, P.K. Tseng, J.F. Lee, L.S. Hsu, doi: 10.1063/1.372015 , J. Appl. Phys. 87, 1312 (2000)
  • [8] L.S. Hsu, Y.K. Wang, doi: 10.1016/j.jallcom.2004.01.034, J. Alloys Comp. 377, 29 (2004)
  • [9] M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, doi: 10.1088/0953-8984/14/11/301, J. Phys., Condens. Matter 14, 2717 (2002)
  • [10] P. Hohenberg, W. Kohn, doi: 10.1103/PhysRev.136.B864, Phys. Rev. B 136, 864 (1964)
  • [11] W. Kohn, L.J. Sham, doi: 10.1103/PhysRev.140.A1133, Phys. Rev. A 140, 113 (1965)
  • [12] D.M. Ceperley, B.J. Alder, doi: 10.1103/PhysRevLett.45.566, Phys. Rev. Lett. 45, 566 (1980)
  • [13] J.P. Perdew, A. Zunger, doi: 10.1103/PhysRevB.23.5048, Phys. Rev. B 23, 5048 (1981)
  • [14] Z. Wu, R.E. Cohen, doi: 10.1103/PhysRevB.73.235116 , Phys. Rev. B 73, 235116 (2006)
  • [15] D. Vanderbilt, doi: 10.1103/PhysRevB.41.7892, Phys. Rev. B 41, 7892 (1990)
  • [16] H.J. Monkhorst, J.D. Pack, doi: 10.1103/PhysRevB.13.5188, Phys. Rev. B 13, 5188 (1976)
  • [17] T.H. Fischer, J. Almlof, doi: 10.1021/j100203a036, J. Phys. Chem. 96, 9768 (1992)
  • [18] F. Birch, doi: 10.1029/JB083iB03p01257, J. Geophys. Res. 83, 1257 (1978)
  • [19] W.B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon, New York 1958
  • [20] J.F. Nye, Physical Properties of Materials, Dunod, Paris 1961 (in French)
  • [21] H. Yasuda, T. Takasugi, M. Koiwa, doi: 10.1016/0956-7151(92)90312-3, Acta Metall. Mater. 40, 381 (1992)
  • [22] C. Zener, Elasticity and Anelasticity of Metals, University of Chicago Press, Chicago 1948
  • [23] W. Voigt, Handbook of Physics of Crystals, Terubner, Leipzig 1928 (in German)
  • [24] A. Reuss, Z. Angew, Math. Mech. 9, 49 (1929)
  • [25] R. Hill, doi: 10.1088/0370-1298/65/5/307, Proc. Phys. Soc. Lond. A 65, 349 (1952)
  • [26] E. Schreiber, O.L. Anderson, N. Soga, Elastic Constants and Their Measurements, McGraw-Hill, New York 1973
  • [27] S.F. Pugh, doi: 10.1080/14786440808520496, Philos. Mag. 45, 823 (1954)
  • [28] P. Wachter, M. Filzmoser, J. Rebisant, doi: 10.1016/S0921-4526(00)00575-5, Physica B, Cond. Mat. 293, 199 (2001)
  • [29] O.L. Anderson, doi: 10.1016/0022-3697(63)90067-2, J. Phys. Chem. Solids 24, 909 (1963)
  • [30] S. Yip, J. Li, M. Tang, J. Wang, doi: 10.1016/S0921-5093(01)01162-5, Mater. Sci. Eng. A 317, 236 (2001)
  • [31] G.V. Sin'ko, A. Smimov, doi: 10.1088/0953-8984/14/29/301, J. Phys., Condens. Matter 14, 6989 (2002)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv125n110kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.