Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 1 | 39-45

Article title

Gaussian Beam Diffraction and Self-Focusing in Weakly Anisotropic and Dissipative Nonlinear Plasma

Content

Title variants

Languages of publication

EN

Abstracts

EN
The paper presents a simple and effective method to calculate polarization and diffraction of the Gaussian beam in nonlinear and weakly dissipative plasma. The presented approach is a combination of quasi-isotropic approximation of geometric optics with complex geometrical optics. Quasi-isotropic approximation describes the evolution of polarization vector reducing the Maxwell equations to coupled ordinary differential equations of the first order for the transverse components of the electromagnetic field. Complex geometrical optics describes the Gaussian beam diffraction and self-focusing and deals with ordinary differential equations for Gaussian beam width, wave front curvature, and amplitude evolution. As a result, the quasi-isotropic approximation + complex geometrical optics combination reduces the problem of diffraction and polarization evolution of an electromagnetic beam to the solution of the ordinary differential equations, which enable to prepare fast and effective numerical algorithms. Using combined complex geometrical optics/quasi-isotropic approximation for weakly anisotropic plasma, we assume that nonlinearity of anisotropy tensor is small and we restrict ourselves to considering only isotropic nonlinearity. The quasi-isotropic approximation effectively describes the evolution of microwave and IR electromagnetic beams in polarimetric and interferometric measurements in thermonuclear reactors and the complex geometrical optics method can be applied for modeling of electron cyclotron absorption and current drive in tokamaks.

Keywords

EN

Contributors

author
  • Institute of Physics, West Pomeranian University of Technology, al. Piastów 19, 70-310 Szczecin, Poland
author
  • Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, al. Piastów 19, 70-310 Szczecin, Poland
author
  • Institute of Physics, Maritime University of Szczecin, 70-500 Szczecin, Poland
  • Space Research Institute, Russian Academy of Sciences, Moscow 117 997, Russia

References

  • [1] Yu.A. Kravtsov, N.Y. Zhu, Theory of Diffraction: Heuristic Approaches, Alpha Science International, Oxford 2010
  • [2] A.A. Fuki, Yu.A. Kravtsov, O.N. Naida, Geometrical Optics of Weakly Anisotropic Media, Gordon & Breach, London 1997
  • [3] Yu.A. Kravtsov, Yu.I. Orlov, doi: 10.1007/978-3-642-84031-9, Geometrical Optics of Inhomogeneous Media, Springer Verlag, Berlin 1990
  • [4] Yu.A. Kravtsov, Geometrical Optics in Engineering Physics, Alpha Science, Harrow 2005
  • [5] Yu.A. Kravtsov, B. Bieg, K.Yu. Bliokh, doi: 10.1364/JOSAA.24.003388, J. Opt. Soc. Am. A 24, 3388 (2007)
  • [6] Z.H. Czyz, B. Bieg, Yu.A. Kravtsov, doi: 10.1016/j.physleta.2007.03.055, Phys. Lett. A 368, 101 (2007)
  • [7] Yu.A. Kravtsov, B. Bieg, doi: 10.1017/S0022377809990328, J. Plasma Phys. 76, 795 (2010)
  • [8] A. Yu, B. Kravtsov, B. Bieg, doi: 10.2478/s11534-009-0128-3, Central European J. Phys. 8, 273 (2010)
  • [9] Yu.A. Kravtsov, J. Chrzanowski, D. Mazon, doi: 10.1140/epjd/e2011-20078-3, Europ. Phys. J. D 63, 135 (2011)
  • [10] Yu.A. Kravtsov, doi: 10.1007/BF01031601, Radiophys. Quant. Electron. 10, 719 (1967)
  • [11] J.B. Keller, W. Streifer, doi: /10.1364/JOSA.61.000040, J. Opt. Soc. Am. 61, 40 (1971)
  • [12] G.A. Deschamps, doi: 10.1049/el:19710467, Electron. Lett. 7, 684 (1971)
  • [13] Yu.A. Kravtsov, G.W. Forbes, A.A. Asatryan, in: Progress in Optics, Ed. E. Wolf, Vol 39, Elsevier, Amsterdam 1999, p. 3
  • [14] S.J. Chapman, J.M. Lawry, J.R. Ockendon, R.H. Tew, doi: 10.1137/S0036144599352058, SIAM Rev. 41, 417 (1999)
  • [15] Yu.A. Kravtsov, P. Berczynski, doi: 10.1007/s11200-007-0002-y, Stud. Geophys. Geod. 51, 1 (2007)
  • [16] Yu.A. Kravtsov, P. Berczynski, doi: 10.1016/j.wavemoti.2003.12.012, Wave Motion 40, 23 (2004)
  • [17] P. Berczynski, Yu.A. Kravtsov, doi: 10.1016/j.physleta.2004.08.056, Phys. Lett. A 331, 265 (2004)
  • [18] P. Berczynski, K.Yu. Bliokh, Yu.A. Kravtsov, A. Stateczny, doi: 10.1364/JOSAA.23.001442, J. Opt. Soc. Am. A 23, 1442 (2006)
  • [19] P. Berczynski, Yu.A. Kravtsov, G. Zeglinski, doi: 10.2478/s11534-008-0094-1, Cent. Eur. J. Phys. 6, 603 (2008)
  • [20] P. Berczynski, Yu.A. Kravtsov, A.P. Sukhorukov, doi: 10.1016/j.physd.2009.11.002, Physica D: Nonlin. Phenom. 239, 241 (2010)
  • [21] M.M. Popov, Vestnik Leningradskogo Universiteta (Bull. Leningrad Univ.) 22, 44 (1969)
  • [22] R.K. Luneburg, Mathematical Theory of Optics, University of California Press, Berkeley 1964
  • [23] V.I. Ginzburg, Propagation of Electromagnetic Waves in Plasma, Gordon and Breach, New York 1970
  • [24] C.E. Max, doi: 10.1063/1.861305, The Physics of Fluids 19, 74 (1976)
  • [25] J.F. Lam, B. Lipman, F. Tappert, Phys. Fluids 20, 1176 (1977)
  • [26] D. Anderson, doi: 10.1088/0031-8949/18/1/010, Phys. Scr. 18, 35 (1978)
  • [27] D.P. Tewari, R.R. Sharma, doi: 10.1088/0022-3727/12/7/008, J. Phys. D, Appl. Phys. 12, 1019 (1979)
  • [28] T.S. Gill, R. Mahajanand, R. Kaur, doi: 10.1017/S0263034609990516, Phys. Plasmas 18, 033110 (2011)
  • [29] M.S. Sodha, D.P. Tewari, A. Kumar, V.K. Tripathi, doi: 10.1088/0022-3727/7/2/320, J. Phys. D, Appl. Phys. 7, 345 (1974)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv125n107kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.