PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 1 | 18-22
Article title

Natural Bond Orbital (NBO) Population Analysis of 1-Azanapthalene-8-ol

Content
Title variants
Languages of publication
EN
Abstracts
EN
The molecular structure of 1-azanapthalene-8-ol was calculated by the B3LYP density functional model with 6-31G(d,p) basis set by Gaussian program. The results from natural bond orbital analysis have been analyzed in terms of the hybridization of atoms and the electronic structure of the title molecule. The stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital analysis. The electron density based local reactivity descriptors such as the Fukui functions were calculated. The dipole moment (μ) and polarizability (α), anisotropy polarizability (Δ α) and first order hyperpolarizability (β_{tot}) of the molecule have been reported.
Keywords
Publisher

Year
Volume
125
Issue
1
Pages
18-22
Physical description
Dates
published
2014-01
received
2013-07-02
(unknown)
2013-11-22
Contributors
  • Department of Physics, Rajalakshmi Engineering College, Chennai 602105, India
  • Department of Applied Physics, Sri Venkateswara College of Engineering, Chennai 602105, India
References
  • [1] G. Collin, H. Höke, doi: 10.1002/14356007.a22_465, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim 2005
  • [2] J.P. Phillips, doi: 10.1021/cr.5008a003, Chem. Rev. 56, 27 (1956)
  • [3] '8-Hydroxyquinoline', doi: 10.3732/ajb.89.5.777, Medical Dictionary Online, 2002
  • [4] R. Katakura, Y. Koide, doi: 10.1021/ic060594s, Inorg. Chem. 45, 5730 (2006)
  • [5] K.G. Stone, L. Friedman, doi: 10.1021/ja 0119a005, J. Am. Chem. Soc. 69, 209 (1947)
  • [6] M. Santo, R. Cattana, J.J. Silber, doi: 10.1016/s1386-1425(00)00478-9, Spectrochim. Acta A 57, 1541 (2001)
  • [7] C. Reichardt, doi: 10.1002/3527601791, Solvents and Solvent Effects in Organic Chemistry, 3rd ed., Wiley-VCH Verlag Weinheim 2003
  • [8] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Suzerain, M.A. Robb, J.R. Cheeseman Jr., J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision A.I, Gaussian, Inc, Pittsburgh (PA) 2003
  • [9] P.C.HAriharan, J.A. Pople, doi: 10.1007/BF00533485, Theor. Chim. Acta 28, 213 (1973)
  • [10] P.C. Hariharan, J.A. Pople, doi: 10.1080/00268977400100171, Mol. Phys. 27, 209 (1974)
  • [11] A.D. Becke, doi: 10.1063/1.464913, J. Chem. Phys. 98, 5648 (1993)
  • [12] A.E. Reed, L.A. Curtiss, F. Weinhold, doi: 10.1021/cr00088a005, Chem. Rev. 88, 899 (1988)
  • [13] E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, doi: 10.1021/ja980917m, J. Am. Chem. Soc. 120, 12051 (1998)
  • [14] I. Sidir, Y.G. Sidir, M. Kumalar, E. Tasal, doi: 10.1016/J.Mol.strc.2009.11.023, J. Mol. Struct. 134, 964 (2010)
  • [15] K. Jug, Z.B. Maksic, in: doi: 10.1007/978-3-642-58179-3_7, Theoretical Model of Chemical Bonding, Ed. Z.B. Maksic, Part 3, Springer, Berlin 1991, p. 29, p. 233
  • [16] S. Fliszar, doi: 10.1007/978-1-4612-5575-8, Charge Distributions and Chemical Effects, Springer, New York 1983
  • [17] L.X. Hong, L.X. Ru, Z.X. Zhou, doi: 10.1016/j.comptc.2011.05.010, Comput. Theor. Chem. 969, 27 (2011)
  • [18] M. Snehalatha, C. Ravikumar, I. Hubert Joe, N. Sekar, V.S. Jayakumar, doi: 10.1016/j.saa.2008.11.017, Spectrochim. Acta 72A, 654 (2009)
  • [19] C. James, A. Amal Raj, R. Reghunathan, I.H. Joe, V.S. Jayakumar, doi: 10.1002/jrs.1554, J. Raman Spectrosc. 37, 138 (2006)
  • [20] J. Liu, Z. Chen, S. Yuan, J. Zhejiang, doi: 10.1631/jzus.2005.B0584, Univ. Sci. B 6, 584 (2005)
  • [21] S. Sebastin, N. Sundaraganesan, doi: 10.1186/1752-153X-4-12, Spectrochim. Acta A 75, 941 (2010)
  • [22] P. Kolandaivel, G. Praveen, P. Selvarengan, doi: 10.1007/BF02708366, J. Chem. Sci. 117, 591 (2005)
  • [23] R.K. Roy, K. Hirao, S. Krishnamurthy, S. Pal, doi: 10.1063/1.1386699, J. Chem. Phys. 115, 2901 (2001)
  • [24] C.R. Zhang, H.S. Chen, G.H. Wang, Chem. Res. Chin. U 20, 640 (2004)
  • [25] Y. Sun, X. Chen, L. Sun, X. Guo, W. Lu, doi: 10.1016/j.cplett.2003.09.115, Chem. Phys. Lett. 38, 397 (2003)
  • [26] O. Christiansen, J. Gauss, J.F. Stanton, doi: 10.1063/S0009-2614(99)00358-9, Chem. Phys. Lett. 305, 147 (1999)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n103kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.