PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 1 | 3-12
Article title

The Problem of Scale in Electric Metrology of Nanostructures in the Context of the New SI Redefinition of the Base Electric Unit

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The classical, electrodynamic definition of the ampere is incoherent with quantum electrodynamics. The problem, although insignificant at the macroscopic scale, manifests clearly at the nanostructure level, where the consistently quantum approach is necessary. In this paper, we consider the Casimir effect to quantify inconsistencies that could have resulted if electric metrology of microstructures and nanostructures (including graphene) had been based on classical electrodynamics and the current SI definition of the ampere. The issue is discussed in the context of the New SI program, where the base electric unit is to be redefined by fixing the numerical value of the elementary charge. The conclusion supports the case for a prompt redefinition of the base electric unit, which will make the electric metrology in general, and the electric metrology of nanostructures in particular, coherent with the international system of units.
Keywords
Contributors
author
  • Applied Science Enterprise, P.O. Box 22, 00-975 Warszawa 12, Poland
References
  • [1] The International System of Units, 8th ed., BIPM website, Sèvres 2006
  • [2] I.M. Mills, Draft Chapter 2 for SI Brochure, following redefinitions of the base units, BIPM website, Sèvres 2010
  • [3] Resolution 2 of the CIPM in 1946, Definitions of electric units, BIPM website, Sèvres 1946
  • [4] Resolution 6 of the 9th CGPM in 1948, Proposal for establishing a practical system of units of measurement, BIPM website, Sèvres 1948
  • [5] W.T. Chyla, Acta Phys. Pol. A 120, 998 (2011)
  • [6] C.J. Bordé, doi: 10.1098/rsta.2005.1635, Philos. Trans. R. Soc. A 363, 2177 (2005)
  • [7] Resolution 2 of the 19th CGPM in 1991, The Josephson and quantum-Hall effects, BIPM website, Sèvres 1991
  • [8] A. Bounouh, D. Bélières, doi: 10.1088/0026-1394/48/1/004, Metrologia 48, 40 (2011)
  • [9] W.T. Chyla, W.D. Deering, doi: 10.1007/BF00334227, Appl. Phys. A 55, 218 (1992)
  • [10] W.T. Chyla, W.D. Deering, doi: 10.1007/BF00331524, Appl. Phys. A 58, 91 (1994)
  • [11] C. Itzykson, J.B. Zuber, Quantum Field Theory, McGraw-Hill, New York 1980, Sect. 3.2.4
  • [12] C.D. Zeinalipour-Yazdi, C. Christofides, doi: 10.1063/1.3211944, J. Appl. Phys. 106, 054318 (2009)
  • [13] C. Lee, X. Wei, J.W. Kysar, J. Hone, doi: 10.1126/science.1157996 , Science 321, 385 (2008)
  • [14] T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, doi: 10.1016/j.progpolymsci.2010.07.005, Prog. Polym. Sci. 35, 1350 (2010)
  • [15] D. Garcia-Sanchez, A.M. van der Zande, A. San Paulo, B. Lassagne, P.L. McEuen, A. Bachtold, doi: 10.1021/nl080201h, Nano Lett. 8, 1399 (2008)
  • [16] Short Handbook of Physico-Chemical Quantities, Eds. K.P. Mishchenko, A.A. Davidel, Chimia, Leningrad 1972 (in Russian)
  • [17] N.G. Chopra, L.X. Benedict, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, doi: 10.1038/377135a0, Nature 377, 135 (1995)
  • [18] H.B.G. Casimir, Proc. Kgl. Ned. Akad. Wet. 60, 793 (1948)
  • [19] H.B.G. Casimir, D. Polder, doi: 10.1103/PhysRev.73.360, Phys. Rev. 73, 360 (1948)
  • [20] M.J. Sparnaay, doi: 10.1016/S0031-8914(58)80090-7, Physica 24, 751 (1958)
  • [21] G. Bressi, G. Carugno, R. Onofrio, G. Ruoso, doi: 10.1103/PhysRevLett.88.041804, Phys. Rev. Lett. 88, 041804 (2002)
  • [22] I. Brevik, S.Å. Ellingsen, K.A. Milton, doi: 10.1142/S0217751X10049542, Int. J. Mod. Phys. A 25, 2270 (2010)
  • [23] D. Drosdoff, L.M. Woods, doi: 10.1103/PhysRevB.82.155459, Phys. Rev. B 82, 155459 (2010)
  • [24] M. Bordag, B. Geyer, G.L. Klimchitskaya, V.M. Mostepanenko, doi: 10.1103/PhysRevB.74.205431, Phys. Rev. B 74, 205431 (2006)
  • [25] J. Sarabadani, A. Naji, R. Asgari, R. Podgornik, doi: 10.1103/PhysRevB.84.155407, Phys. Rev. B 84, 155407 (2011)
  • [26] B.E. Sernelius, doi: 10.1209/0295-5075/95/57003, Europ. Phys. Lett. 95, 57003 (2011)
  • [27] J.N. Munday, F. Capasso, doi: 10.1142/S0217751X10049529, Int. J. Mod. Phys. A 25, 2252 (2010)
  • [28] O. Kenneth, I. Klich, A. Mann, M. Revzen, doi: 10.1103/PhysRevLett.89.033001, Phys. Rev. Lett. 89, 033001 (2002)
  • [29] N. Inui, K. Miura, doi: 10.1380/ejssnt.2010.57, e-J. Surf. Sci. Nanotechnol. 8, 57 (2010)
  • [30] D. Drosdoff, L.M. Woods, doi: 10.1103/PhysRevA.84.062501, Phys. Rev. A 84, 062501 (2011)
  • [31] I.V. Fialkovsky, V.N. Marachevsky, D.V. Vassilevich, doi: 10.1103/PhysRevB.84.035446, Phys. Rev. B 84, 035446 (2011)
  • [32] V. Svetovoy, Z. Moktadir, M. Elwenspoek, H. Mizuta, doi: 10.1209/0295-5075/96/14006, Europ. Phys. Lett. 96, 14006 (2011)
  • [33] C.I. Sukenik, M.G. Boshier, D. Cho, V. Sandoghdar, E.A. Hinds, doi: 10.1103/PhysRevLett.70.560, Phys. Rev. Lett. 70, 560 (1993)
  • [34] R.S. Decca, D. López, E. Fischbach, G.L. Klimchitskaya, D.E. Krause, V.M. Mostepanenko, doi: 10.1103/PhysRevD.75.077101, Phys. Rev. D 75, 077101 (2007)
  • [35] S.K. Lamoreaux, doi: 10.1063/1.2711635, Phys. Today 60, (2) 40 (2007)
  • [36] M. Bordag, U. Mohideen, V.M. Mostepanenko, doi: 10.1016/S0370-1573(01)00015-1, Phys. Rep. 353, 1 (2001)
  • [37] M. Bordag, G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Advances in the Casimir Effect, International Series of Monographs on Physics, Vol. 145, Oxford University Press, Oxford 2009
  • [38] A.W. Rodriguez, F. Capasso, S.G. Johnson, doi: 10.1038/nphoton.2011.39, Nature Photonics 5, 211 (2011)
  • [39] K.A. Milton, The Casimir Effect: Physical Manifestations of Zero-point Energy, World Scientific, Singapore 2001
  • [40] L. Pálová, P. Chandra, P. Coleman, doi: 10.1119/1.3194050, Am. J. Phys. 77, 1055 (2009)
  • [41] S.K. Lamoreaux, doi: 10.1119/1.19138, Am. J. Phys. 67, 850 (1999)
  • [42] R. Murali, Y. Yang, K. Brenner, T. Beck, J.D. Meindl, doi: 10.1063/1.3147183, Appl. Phys. Lett. 94, 243114 (2009)
  • [43] D. Kondo, S. Sato, K. Yagi, N. Harada, M. Sato, M. Nihei, N. Yokoyama, doi: 10.1143/APEX.3.025102, Appl. Phys. Expr. 3, 025102 (2010)
  • [44] A. Barreiro, M. Lazzeri, J. Moser, F. Mauri, A. Bachtold, doi: 10.1103/PhysRevLett.103.076601, Phys. Rev. Lett. 103, 076601 (2009)
  • [45] L. Liao, Y.C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K.L. Wang, Y. Huang, X. Duan, doi: 10.1038/nature09405, Nature 467 (7313), 305 (2010)
  • [46] J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, doi: 10.1038/nnano.2008.58, Nature Nanotechnol. 3, 206 (2008)
  • [47] S. Adam, E.H. Hwang, V.M. Galitski, S. Das Sarma, doi: 10.1073/pnas.0704772104 , Proc. Natl. Acad. Sci. 104, 18392 (2007)
  • [48] D.K. Efetov, P. Kim, doi: 10.1103/PhysRevLett.105.256805, Phys. Rev. Lett. 105, 256805 (2010)
  • [49] W.T. Chyla, doi: 10.1088/0026-1394/49/4/L17, Metrologia 49, L17 (2012)
  • [50] W.T. Chyla, doi: 10.1088/0026-1394/49/3/L11, Metrologia 49, L11 (2012)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n101kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.