PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 124 | 6 | 1098-1105
Article title

Random Unitary Matrices Associated to a Graph

Content
Title variants
Languages of publication
EN
Abstracts
EN
We analyze composed quantum systems consisting of k subsystems, each described by states in the n-}dimensional Hilbert space. Interaction between subsystems can be represented by a graph, with vertices corresponding to individual subsystems and edges denoting a generic interaction, modeled by random unitary matrices of order n^2. The global evolution operator is represented by a unitary matrix of size N = n^{k}. We investigate statistical properties of such matrices and show that they display spectral properties characteristic to the Haar random unitary matrices provided the corresponding graph is connected. Thus basing on random unitary matrices of a small size n^2 one can construct a fair approximation of large random unitary matrices of size n^{k}. Graph-structured random unitary matrices investigated here allow one to define the corresponding structured ensembles of random pure states.
Keywords
Contributors
author
  • Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
  • Institute of Physics, Jagiellonian University, W.S. Reymonta 4, 30-059 Kraków, Poland
  • Center for Theoretical Physics, PAS, al. Lotników 32/44, 02-668 Warszawa, Poland
References
  • [1] F. Haake, Quantum Signatures of Chaos, 3rd ed., Springer, Berlin 2006
  • [2] M.L. Mehta, Random Matrices, Academic Press, Amsterdam 2004
  • [3] B. Collins, I. Nechita, K. Życzkowski, J. Phys. A 43, 275303 (2010)
  • [4] B. Collins, I. Nechita, K. Życzkowski, J. Phys. A 46, 305302 (2013)
  • [5] F. Verstraete, J.I. Cirac, Phys. Rev. A 70, 060302 (2004)
  • [6] F. Verstraete, M.M. Wolf, D. Perez-Garcia, J.I. Cirac, Phys. Rev. Lett. 96, 220601 (2006)
  • [7] S. Perseguers, J.I. Cirac, A. Acin, M. Lewenstein, J. Wehr, Phys. Rev. A 77, 022308 (2008)
  • [8] S. Perseguers, D. Cavalcanti, G.J. Lapeyre, Jr., M. Lewenstein, A. Acin, Phys. Rev. A 81, 032327 (2010)
  • [9] P. Pakoński, G. Tanner, K. Życzkowski, J. Stat. Phys. 111, 1331 (2003)
  • [10] K. Życzkowski, M. Kuś, J. Phys. A 27, 4235 (1994)
  • [11] F. Mezzadri, Notic. AMS 54, 592 (2007)
  • [12] T. Tkocz, M. Smaczyński, M. Kuś, O. Zeitouni, K. Życzkowski, Random Matric. Theory Appl. 1, 1250009 (2012)
  • [13] T. Tkocz, Electron. Commun. Probab. 18, 1 (2013)
  • [14] M. Smaczyński, T. Tkocz, M. Kuś, K. Życzkowski, Phys. Rev. E 88, 052902 (2013)
  • [15] M. Poźniak, K. Życzkowski, M. Kuś, J. Phys. A, Math. Gen. 31, 1059 (1998)
  • [16] K. Życzkowski, M. Kuś, W. Słomczyński, H. Sommers, J. Phys. A 36, 3425 (2003)
  • [17] K. Jones, J. Phys. A 23, L1247 (1990)
  • [18] I. Bengtsson, K. Życzkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement, Cambridge Univ. Press, Cambridge 2006
  • [19] D.N. Page, Phys. Rev. Lett. 71, 1291 (1993)
  • [20] K. Życzkowski, H. Sommers, J. Phys. A 34, 7111 (2001)
  • [21] E. Lubkin, J. Math. Phys. 19, 1028 (1978)
  • [22] S. Gnutzmann, U. Smilansky, Adv. Phys. 55, 527 (2006)
  • [23] O. Hul, S. Bauch, P. Pakoński, N. Savytskyy, K. Życzkowski, L. Sirko, Phys. Rev. E 69, 056205 (2004)
  • [24] M. Ławniczak, A. Borkowska, O. Hul, S. Bauch, L. Sirko, Acta Phys. Pol. A 120, A185 (2011)
  • [25] J. Emerson, Y. Weinstein, M. Saraceno, S. Lloyd, D. Cory, Science 302, 2098 (2003)
  • [26] M. Žnidarič, Phys. Rev. A 76, 012318 (2007)
  • [27] Y.S. Weinstein, 'Pseudo-Random Circuits from Clifford Plus T-Gates,' arXiv:1309.3943, 2013
  • [28] C. Sanderson, 'Armadillo: An Open Source C++ Linear Algebra Library for Fast Prototyping and Computationally Intensive Experiments,' tech. rep., NICTA, 2010
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv124n661kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.