PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 124 | 6 | 1087-1090
Article title

Scattering from a Ring Graph - A~Simple Model for the Study of Resonances

Content
Title variants
Languages of publication
EN
Abstracts
EN
Scattering from the very simple ring graph is shown to display several basic features which underlie the complex (chaotic) phenomena observed in scattering from more complex graphs. In particular we demonstrate the appearance of arbitrarily narrow resonances - the "topological resonances" which are directly linked to the existence of cycles. We use the ring graph to study the response of such resonances to perturbations induced by a time-dependent random noise.
Keywords
Contributors
author
  • Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
author
  • Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
  • School of Mathematics, Cardiff University, Cardiff, Wales, UK
References
  • [1] T. Kottos, U. Smilansky, Phys. Rev. Lett. 79, 4794 (1997)
  • [1a] T. Kottos, U. Smilansky, Ann. Phys. 274, 76 (1999)
  • [2] S. Gnutzmann, U. Smilansky, Adv. Phys. 55, 527 (2006)
  • [3] Analysis on Graphs and Its Applications, Eds. P. Exner, J.P. Keating, P. Kuchment, T. Sunada, A. Teplyaev, Proc. Symp. in Pure Mathematics, American Mathematical Society, Providence 2008
  • [4] G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs, Mathematical Surveys and Monographs, Vol. 186, AMS, Providence 2013
  • [5] T. Kottos, U. Smilansky, Phys. Rev. Lett. 85, 968 (2000)
  • [5a] T. Kottos, U. Smilansky, J. Phys. A, Math. Gen. 36, 3501 (2003)
  • [6] Z. Pluhar, H.A. Weidenmüller, Phys. Rev. Lett. 110, 034101 (2013)
  • [7] S. Gnutzmann, H. Schanz, U. Smilansky, Phys. Rev. Lett. 110, 094101 (2013)
  • [8] S. Gnutzmann, U. Smilansky, S. Derevyanko, Phys. Rev. A 83, 033831 (2011)
  • [9] H. Feshbach, Ann. Phys. (New York) 5, 357 (1958)
  • [10] D. Waltner, Transmission through a Noisy Network, unpublished results
  • [11] B. Bodmann, H. Leschke, S. Warzel, in: Path Integrals: Dubna '96, Eds. V.S. Yarunin, M.A. Smondyrev, Dubna 1996, p. 95
  • [12] H.J. Carmichael, Statistical Methods in Quantum Optics: Master Equations and Fokker-Planck Equations, Springer, Berlin 1999
  • [13] R. Blümel, A. Buchleitner, R. Graham, L. Sirko, U. Smilansky, H. Walther, Phys. Rev. A 44, 4521 (1991)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv124n659kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.