Preferences help
enabled [disable] Abstract
Number of results
2013 | 124 | 6 | 1060-1062
Article title

On the Spectral Gap for Laplacians on Metric Graphs

Title variants
Languages of publication
We discuss lower and upper estimates for the spectral gap of the Laplace operator on a finite compact connected metric graph. It is shown that the best lower estimate is given by the spectral gap for the interval with the same total length as the original graph. An explicit upper estimate is given by generalizing Cheeger's approach developed originally for Riemannian manifolds.
  • Dept. of Mathematics, Stockholm Univ., 106 91, Stockholm, Sweden
  • [1] M. Fiedler, Czechoslov. Math. J. 23, 298 (1973)
  • [2] G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs, AMS, Providence 2013
  • [3] P. Kurasov, 'Quantum Graphs: Spectral Theory and Inverse Problems', in preparation
  • [4] O. Post, Lecture Notes Math., Vol. 2039, Springer, Heidelberg 2012
  • [5] G. Berkolaiko, P. Kuchment, Proc. Symp. Pure Math. 84, 117 (2012)
  • [6] P. Exner, M. Jex, Phys. Lett. A 376, 713 (2012)
  • [7] L. Friedlander, Ann. Inst. Fourier (Grenoble) 55, 199211 (2005)
  • [8] P. Kurasov, G. Malenova, S. Naboko, J. Phys. A, Math. Theor. 46, 275309 (2013)
  • [9] P. Kurasov, S. Naboko, accepted for publication in J. Spectral Theory
  • [10] L. Euler, 'Solutio problematis ad geometriam situs pertinentis', Comment. Academiae Sci. I. Petropolitanae 8, 128 (1736)
  • [11] C. Hierholzer, Chr. Wiener, 'Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren', Math. Ann. 6, 3032 (1873) (in German)
  • [12] J. Cheeger, in: Problems in Analysis, Ed. R.C. Gunning, Princeton University Press, New Jersey 1970, p. 195
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.