PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 124 | 6 | 1045-1052
Article title

Impedance and Scattering Variance Ratios of Complicated Wave Scattering Systems in the Low Loss Regime

Content
Title variants
Languages of publication
EN
Abstracts
EN
Random matrix theory successfully predicts universal statistical properties of complicated wave scattering systems in the semiclassical limit, while the random coupling model offers a complete statistical model with a simple additive formula in terms of impedance to combine the predictions of random matrix theory and nonuniversal system-specific features. The statistics of measured wave properties generally have nonuniversal features. However, ratios of the variances of elements of the impedance matrix are predicted to be independent of such nonuniversal features and thus should be universal functions of the overall system loss. In contrast with impedance variance ratios, scattering variance ratios depend on nonuniversal features unless the system is in the high loss regime. In this paper, we present numerical tests of the predicted universal impedance variance ratios and show that an insufficient sample size can lead to apparent deviation from the theory, particularly in the low loss regime. Experimental tests are carried out in three two-port microwave cavities with varied loss parameters, including a novel experimental system with a superconducting microwave billiard, to test the variance-ratio predictions in the low loss time-reversal-invariant regime. It is found that the experimental results agree with the theoretical predictions to the extent permitted by the finite sample size.
Keywords
Contributors
author
  • University of Maryland, College Park, MD 20742, USA
author
  • U.S. Naval Research Laboratory, Washington, DC 20375, USA
author
  • U.S. Naval Research Laboratory, Washington, DC 20375, USA
author
  • U.S. Naval Research Laboratory, Washington, DC 20375, USA
author
  • University of Maryland, College Park, MD 20742, USA
author
  • University of Maryland, College Park, MD 20742, USA
author
  • University of Maryland, College Park, MD 20742, USA
author
  • U.S. Naval Research Laboratory, Washington, DC 20375, USA
author
  • University of Maryland, College Park, MD 20742, USA
References
  • [1] R.G. Newton, Scattering Theory of Waves and Particles, McGraw-Hill, New York 1966
  • [2] H.-J. Stöckmann, Quantum Chaos, Cambridge University Press, Cambridge, England 1999
  • [3] F. Haake, Quantum Signatures of Chaos, 2nd ed., Springer, Berlin 2000
  • [4] B.L. Altshuler, P.A. Lee, R.A. Webb, Mesoscopic Phenomena in Solids, North Holland, Amsterdam 1991
  • [5] P.W. Brouwer, C.W.J. Beenakker, Phys. Rev. B 55, 4695 (1997)
  • [6] Y. Alhassid, Rev. Mod. Phys. 75, 895 (2000)
  • [7] P.A. Mello, N. Kumar, Quantum Transport in Mesoscopic Systems, Oxford University Press, New York 2004
  • [8] V. Pagneux, A. Maurel, Phys. Rev. Lett. 86, 1199 (2001)
  • [9] E. Doron, U. Smilansky, A. Frenkel, Phys. Rev. Lett. 65, 3072 (1990)
  • [10] U. Kuhl, M. Martínez-Mares, R.A. Méndez-Sánchez, H.-J. Stöckmann, Phys. Rev. Lett. 94, 144101 (2005)
  • [11] S. Hemmady, X. Zheng, E. Ott, T.M. Antonsen, S.M. Anlage, Phys. Rev. Lett. 94, 014102 (2005)
  • [12] S. Hemmady, X. Zheng, T.M. Antonsen, E. Ott, S.M. Anlage, Phys. Rev. E 71, 056215 (2005)
  • [13] R. Holland, R.St. John, Statistical Electromagnetics, Taylor and Francis, United Kingdom 1999
  • [14] O. Bohigas, M.J. Giannoni, C. Schmidt, Phys. Rev. Lett. 52, 1 (1984)
  • [15] M.L. Mehta, Random Matrices, 2nd ed., Academic Press, Boston 1991
  • [16] G. Akemann, J. Baik, P. Di Francesco, The Oxford Handbook of Random Matrix Theory, Oxford University Press, Oxford 2011
  • [17] X. Zheng, T.M. Antonsen, E. Ott, Electromagnetics 26, 3 (2006)
  • [18] X. Zheng, T.M. Antonsen, E. Ott, Electromagnetics 26, 37 (2006)
  • [19] J.A. Hart, T.M. Antonsen, E. Ott, Phys. Rev. E 80, 041109 (2009)
  • [20] J.-H. Yeh, J.A. Hart, E. Bradshaw, T.M. Antonsen, E. Ott, S.M. Anlage, Phys. Rev. E 81, 025201(R) (2010)
  • [21] J.-H. Yeh, J.A. Hart, E. Bradshaw, T.M. Antonsen, E. Ott, S.M. Anlage, Phys. Rev. E 82, 041114 (2010)
  • [22] S. Hemmady, X. Zheng, T.M. Antonsen, E. Ott, S.M. Anlage, Phys. Rev. E 74, 036213 (2006)
  • [23] S. Hemmady, J. Hart, X. Zheng, T.M. Antonsen, E. Ott, S.M. Anlage, Phys. Rev. B 74, 195326 (2006)
  • [24] J.-H. Yeh, T.M. Antonsen, E. Ott, S.M. Anlage, Phys. Rev. E 85, 015202(R) (2012)
  • [25] J.-H. Yeh, E. Ott, T.M. Antonsen, S.M. Anlage, Acta Phys. Pol. A 120, A-85 (2012)
  • [26] X. Zheng, S. Hemmady, T.M. Antonsen, S.M. Anlage, E. Ott, Phys. Rev. E 73, 046208 (2006)
  • [27] D.M. Pozar, Microwave Engineering, Addison-Wesley Longman, Boston 1990
  • [28] J.J.M. Verbaarschot, H.A. Weidenmüller, M.R. Zirnbauer, Phys. Rep. 129, 367 (1985)
  • [29] C.H. Lewenkopf, H.A. Weidemüller, Ann. Phys. 212, 53 (1991)
  • [30] F. Beck, C. Dembowski, A. Heine, A. Richter, Phys. Rev. E 67, 066208 (2003)
  • [31] Y.V. Fyodorov, D.V. Savin, JETP Lett. 80, 725 (2004)
  • [32] Y.V. Fyodorov, D.V. Savin, H.-J. Sommers, J. Phys. A: Math. Gen. 38, 10731 (2005)
  • [33] D.V. Savin, H.-J. Sommers, Y.V. Fyodorov, JETP Lett. 82, 544 (2005)
  • [34] D.V. Savin, Y.V. Fyodorov, H.-J. Sommers, Acta Phys. Pol. A 109, 53 (2006)
  • [35] W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)
  • [36] D. Agassi, H.A. Weidenmuller, G. Mantzouranis, Phys. Rep., Phys. Lett. 22, 145 (1975)
  • [37] W.A. Friedman, P.A. Mello, Ann. Phys. 161, 276 (1985)
  • [38] J.J.M. Verbaarschot, Ann. Phys. 168, 368 (1986)
  • [39] W. Kretschmer, M. Wangler, Phys. Rev. Lett. 41, 1224 (1978)
  • [40] B. Dietz, T. Friedrich, H.L. Harney, M. Miski-Oglu, A. Richter, F. Schäfer, H.A. Weidenmüller, Phys. Rev. E 81, 036205 (2010)
  • [41] C. Fiachetti, B. Michielsen, Electron. Lett. 39, 1713 (2003)
  • [42] M. Ławniczak, S. Bauch, O. Hul, L. Sirko, Phys. Rev. E 81, 046204 (2010)
  • [43] M. Ławniczak, S. Bauch, O. Hul, L. Sirko, Phys. Scr. T 143, 014014 (2011)
  • [44] M. Ławniczak, S. Bauch, O. Hul, L. Sirko, Phys. Scr. T 147, 014018 (2012)
  • [45] R. Schäfer, T. Gorin, T.H. Seligman, H.-J. Stöckmann, New J. Phys. 7, 152 (2005)
  • [46] H. Schanze, H.-J. Stöckmann, M. Martínez-Mares, C.H. Lewenkopf, Phys. Rev. E 71, 016223 (2005)
  • [47] P. So, S.M. Anlage, E. Ott, R.N. Oerter, Phys. Rev. Lett. 74, 2662 (1995)
  • [48] A. Gokirmak, D.-H. Wu, J. Bridgewater, S.M. Anlage, Rev. Sci. Instrum. 69, 3410 (1998)
  • [49] S.-H. Chung, A. Gokirmak, D.-H. Wu, J.S.A. Bridgewater, E. Ott, T.M. Antonsen, S.M. Anlage, Phys. Rev. Lett. 85, 2482 (2000)
  • [50] S. Ree, L.E. Reichl, Phys. Rev. E 60, 1607 (1999)
  • [51] A. Richter, Phys. Scr. T 90, 212 (2001)
  • [52] B. Dietz, A. Heine, A. Richter, O. Bohigas, P. Leboeuf, Phys. Rev. E 73, 035201(R) (2006)
  • [53] B. Dietz, T. Friedrich, H.L. Harney, M. Miski-Oglu, A. Richter, F. Schäfer, H.A. Weidenmüller, Phys. Rev. E 78, 055204 (2008)
  • [54] J.-H. Yeh, S.M. Anlage, Rev. Sci. Instrum. 84, 034706 (2013)
  • [55] B.T. Taddese, T.M. Antonsen, E. Ott, S.M. Anlage, Electron. Lett. 47, 1165 (2011)
  • [56] M. Frazier, B. Taddese, T. Antonsen, S.M. Anlage, Phys. Rev. Lett. 110, 063902 (2013)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv124n651kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.