Journal
Article title
Title variants
Languages of publication
Abstracts
In this paper we report how dielectric spectroscopy can help in creating of dual-frequency nematic liquid crystals. Dual-frequency nematic liquid crystals is new class of liquid crystal materials. Such mixture is usually formed by a combination of many components (even more than 10), which can be split into two groups: molecules having large transverse dipole moment and molecules with a large longitudinal dipole moment. The behavior of a base (parent) mixture, functional admixtures and final dual-frequency nematic liquid crystals mixture is investigated by dielectric spectroscopy in wide frequency (100 Hz-10 MHz) and temperature ranges. This allows us to find out why the dual-frequency liquid crystal has an important feature: positive and negative dielectric anisotropy at different frequencies. We present parameters of molecular motions around short (S-mode) and long (L-mode) molecular axes observed in investigated materials and discuss how the creation of final dual-frequency nematic liquid crystals mixture can modify molecular relaxations.
Discipline
- 77.22.Gm: Dielectric loss and relaxation
- 77.84.Nh: Liquids, emulsions, and suspensions; liquid crystals(for structure of liquid crystals, see 61.30.-v)
- 61.30.-v: Liquid crystals(for phase transitions in liquid crystals, see 64.70.M-; for liquid crystals as dielectric materials, see 77.84.Nh; for liquid crystals as optical materials, see 42.70.Df; for liquid crystal devices, see 42.79.Kr)
Journal
Year
Volume
Issue
Pages
940-945
Physical description
Dates
published
2013-12
Contributors
author
- Institute of Applied Physics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
author
- Institute of Applied Physics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
author
- Institute of Chemistry, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
author
- Institute of Chemistry, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
author
- Institute of Applied Physics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
References
- [1] M. Schadt, Appl. Phys. Lett. 41, 697 (1982)
- [2] M. Schadt, Mol. Cryst. Liq. Cryst. 89, 77 (1982)
- [3] H.Q. Xianyu, S.T. Wu, C.L. Lin, Liq. Cryst. 36, 717 (2009)
- [4] P. Kumar, S.-W. Kang, S.H. Lee, Opt. Mater. Expr. 2, 1121 (2012)
- [5] X. Liang, Y.Q. Lu, Y.H. Wu, F. Du, H.Y. Wang, S.T. Wu, Jpn. J. Appl. Phys. 44, 1292 (2005)
- [6] J. Czub, R. Dabrowski, J. Dziaduszek, S. Urban, Phase Transit. 82, 485 (2009)
- [7] J. Czub, R. Dabrowski, S. Urban, Phase Transit. 80, 631 (2007)
- [8] P. Perkowski, M. Mrukiewicz, K. Garbat, M. Laska, U. Chodorow, W. Piecek, R. Dabrowski, J. Parka, Liq. Cryst. 39, 1237 (2012)
- [9] P. Perkowski, M. Mrukiewicz, M. Laska, K. Garbat, W. Piecek, R. Dabrowski, Phase Transit. 86, 113 (2013)
- [10] R. Dabrowski, J. Dziaduszek, K. Garbat, M. Filipowicz, S. Urban, S. Gauza, G. Sasnouski, Liq. Cryst. 37, 1529 (2010)
- [11] P. Perkowski, D. Lada, K. Ogrodnik, J. Rutkowska, W. Piecek, Z. Raszewski, Opto-Electron. Rev. 16, 271 (2008)
- [12] P. Perkowski, Opto-Electron. Rev. 17, 180 (2009)
- [13] P. Perkowski, Opto-Electron. Rev. 20, 79 (2012)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv124n607kz