Preferences help
enabled [disable] Abstract
Number of results
2013 | 124 | 5 | 817-820
Article title

GaAs-Based Quantum Well Exciton-Polaritons beyond 1 μm

Title variants
Languages of publication
Realization of the Bose-Einstein condensate can provide a way for creation of an inversion-free coherent light emitter with ultra-low threshold power. The currently considered solutions provide polaritonic emitters in a spectral range far below 1 μm limiting their application potential. Hereby, we present optical studies of InGaAs/GaAs based quantum well in a cavity structure exhibiting polaritonic eigenmodes from 5 to 160 K at a record wavelength exceeding 1 μm. The obtained Rabi splitting of 7 meV was almost constant with temperature, and the resulting coupling constant is close to the calculated QW exciton binding energy. This indicates the very strong coupling conditions explaining the observation of polaritons at temperatures where the exciton dissociation is already expected, and allows predicting that room temperature polaritons could still be formed in this kind of a system.
Physical description
  • [1] K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E.L. Hu, A. Imamoğlu, Nature 445, 896 (2007)
  • [2] J.P. Reithmaier, G. Sęk, A. Loeffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L.V. Keldysh, V.D. Kulakovskii, T.L. Reinecke, A. Forchel, Nature 432, 197 (2004)
  • [3] L.S. Dang, D. Heger, R. André, F. Bœuf, R. Romestain, Phys. Rev. Lett. 81, 3920 (1998)
  • [4] R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Science 316, 1007 (2007)
  • [5] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymaska, R. André, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, Le Si Dang, Nature 443, 409 (2006)
  • [6] C. Weisbuch, M. Nishioka, A. Ishikawa, A. Arakawa, Phys. Rev. Lett. 69, 3314 (1992)
  • [7] H. Deng, G. Weihs, D. Snoke, J. Bloch, Y. Yamamoto, Proc. Natl. Acad. Sci. 100, 15318 (2003)
  • [8] A. Imamoglu, R.J. Ram, S. Pau, Y. Yamamoto, Phys. Rev. A 53, 4250 (1996)
  • [9] S. Christopoulos, G. Baldassarri, H. von Högersthal, A.J.D. Grundy, P.G. Lagoudakis, A.V. Kavokin, J.J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, Phys. Rev. Lett. 98, 126405 (2007)
  • [10] G. Christmann, R. Butté, E. Feltin, J.F. Carlin, N. Grandjean, Appl. Phys. Lett. 93, 051102 (2008)
  • [11] H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto, Science 298, 199 (2002)
  • [12] D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, J. Bloch, Phys. Rev. Lett. 100, 047401 (2008)
  • [13] S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S.H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, A. Forchel, Appl. Phys. Lett. 90, 251109 (2007)
  • [14] S.I. Tsintzos, N.T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, P.G. Savvidis, Nature 453, 372 (2008)
  • [15] C. Schneider, A. Rahimi-Iman, N.Y. Kim, J. Fischer, I.G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V.D. Kulakovskii, I.A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, S. Höfling, Nature 497, 348 (2013)
  • [16] S. Pau, G. Björk, J. Jacobson, H. Tsao, Y. Yamamoto, Phys. Rev. B 51, 14437 (1995)
  • [17] K. Ryczko, G. Sęk, J. Misiewicz, Solid State Commun. 122, 323 (2002)
  • [18] J.B. Khurgin, Solid State Commun. 117, 307 (2001)
  • [19] D.S. Citrin, J.B. Khurgin, Phys. Rev. B 68, 205325 (2003)
  • [20] H. Zhang, N.Y. Kim, Y. Yamamoto, N. Na, Phys. Rev. B 87, 115303 (2013)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.