PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 124 | 5 | 801-804
Article title

Effect of Confinement Anisotropy on Excitonic Properties in InAs/InP Quantum Dashes

Content
Title variants
Languages of publication
EN
Abstracts
EN
The influence of confinement potential anisotropy on emission properties of strongly elongated single InAs/InGaAlAs/InP quantum dashes has been investigated by polarization-resolved microphotoluminescence spectroscopy at around 1.5 μm. There have been determined the exciton fine structure splitting, degree of linear polarization of surface emission and biexciton binding energy. The investigated dashes exhibited usually: the exciton anisotropy splitting larger than 100 μeV, the corresponding biexciton binding energy of about 3 meV, and the degree of linear polarization values in the range from 24% to 55%. Here, we presented a correlation of these parameters for several quantum dashes, which can be attributed either to a change in lateral aspect ratio within the ensemble, or the carrier localization on random fluctuations of the dash confinement potential.
Keywords
Contributors
author
  • Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
  • Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
  • Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
  • Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
  • Technische Physik, University of Würzburg and Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems (RCCM), Am Hubland, D-97074 Würzburg, Germany
author
  • Technische Physik, University of Würzburg and Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems (RCCM), Am Hubland, D-97074 Würzburg, Germany
author
  • Technische Physik, University of Würzburg and Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems (RCCM), Am Hubland, D-97074 Würzburg, Germany
author
  • Technische Physik, University of Würzburg and Wilhelm-Conrad-Röntgen-Research Center for Complex Material Systems (RCCM), Am Hubland, D-97074 Würzburg, Germany
References
  • [1] C.H. Bennett, G. Brassard, in: Proc. IEEE Int. Conf. on Computers Systems and Signal Processing, Bangalore (India), 1984, p. 175
  • [2] E. Knill, R. Laflamme, G.J. Milburn, Nature 409, 46 (2001)
  • [3] C. Santori, D. Fattal, J. Vuckovic, G.S. Solomon, Y. Yamamoto, New J. Phys. 6, 89 (2004)
  • [4] T. Heindel, C. Schneider, M. Lermer, S.H. Kwon, T. Braun, S. Reitzenstein, S. Hofling, M. Kamp, A. Forchel, Appl. Phys. Lett. 96, 11107 (2010)
  • [5] K. Takemoto, M. Takatsu, S. Hirose, N. Yokoyama, Y. Sakuma, T. Usuki, T. Miyazawa, Y. Arakawa, J. Appl. Phys. 101, 081720 (2007)
  • [6] G. Saint-Girons, N. Chauvin, A. Michon, G. Patriarche, G. Beaudoin, G. Breěmond, C. Bru-Chevallier, I. Sagnes, Appl. Phys. Lett. 88, 133101 (2006)
  • [7] P. Miska, J. Even, C. Platz, J. Appl. Phys. 95, 1074 (2004)
  • [8] A. Sauerwald, T. Kümmell, G. Bacher, A. Somers, R. Schwertberger, J.P. Reithmaier, A. Forchel, Appl. Phys. Lett. 86, 253112 (2005)
  • [9] A. Somers, W. Kaiser, J.P. Reithmaier, A. Forchel, M. Gioaninni, I. Montrosset, Appl. Phys. Lett. 89, 061107 (2006)
  • [10] J.P. Reithmaier, G. Eisenstein, A. Forchel, Proc. IEEE 95, 1779 (2007)
  • [11] J.P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T.W. Berg, M. van der Poel, J. Mørk, B. Tromborg, J. Phys. D, Appl. Phys. 38, 2088 (2005)
  • [12] A. Musiał, P. Kaczmarkiewicz, G. Sęk, P. Podemski, P. Machnikowski, J. Misiewicz, S. Hein, S. Höfling, A. Forchel, Phys. Rev. B 85, 035314 (2012)
  • [13] T. Mensing, L. Worschech, R. Schwertberger, J.P. Reithmaier, A. Forchel, Appl. Phys. Lett. 82, 2799 (2003)
  • [14] G. Sęk, P. Podemski, A. Musiał, J. Misiewicz, S. Hein, S. Höfling, A. Forchel, J. Appl. Phys. 105, 086104 (2009)
  • [15] E. Dekel, D. Gershoni, E. Ehrenfreund, J. Garcia, P. Petroff, Phys. Rev. B 61, 11009 (2000)
  • [16] G. Sęk, A. Musiał, P. Podemski, J. Misiewicz, J. Appl. Phys. 108, 033507 (2010)
  • [17] R. Seguin, A. Schliwa, S. Rodt, K. Pötschke, U. Pohl, D. Bimberg, Phys. Rev. Lett. 95, 257402 (2005)
  • [18] Y. Masumoto, S. Yoshida, M. Ikezawa, S. Tomimoto, Y. Sakuma, Appl. Phys. Lett. 98, 061905 (2011)
  • [19] N. Chauvin, B. Salem, G. Bremond, G. Guillot, C. Bru-Chevallier, M. Gendry, J. Appl. Phys. 100, 073702 (2006)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv124n513kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.