Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 124 | 5 | 765-767

Article title

Potential Energy Surfaces for H Adsorbed at 4H-SiC{0001} Surfaces

Content

Title variants

Languages of publication

EN

Abstracts

EN
The constant adsorption energy surfaces for hydrogen adsorbed on Si- and C-terminated hexagonal 4H-SiC{0001} surfaces have been calculated within density functional theory framework. The two unreconstructed and one reconstructed √3 × √3 surfaces were taken into account. We show that on all surfaces there is a global energy minimum indicating the most favourable adsorption site corresponding to H atom adsorption on-top of the topmost substrate layer atom. In case of reconstructed surface, there is another small and shallow local minimum. Moreover, the diffusion barrier is much higher at reconstructed surface than at unreconstructed ones.

Keywords

Contributors

author
  • Institute of Experimental Physics, University of Wrocław, Pl. M. Borna 9, PL-50-204 Wrocław, Poland
  • Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, A. Pawińskiego 5a, PL-02-106 Warsaw, Poland
author
  • Institute of Experimental Physics, University of Wrocław, Pl. M. Borna 9, PL-50-204 Wrocław, Poland

References

  • [1] Th. Seyller, Appl. Phys. A, Mater. Sci. Proc. 85, 371 (2006)
  • [2] G.P. Brandino, G. Cicero, B. Bonferroni, A. Ferretti, A. Calzolari, C.M. Bertoni, A. Catellani, Phys. Rev. B 76, 085322 (2007)
  • [3] Th. Seyller, J. Phys., Condens. Matter 16, S1755 (2004)
  • [4] Th. Seyller, R. Graupner, N. Sieber, K.V. Emtsev, L. Ley, A. Tadich, J.D. Riley, R.C.G. Leckey, Phys. Rev. B 71, 245333 (2005)
  • [5] G.V. Soares, I.J.R. Baumvol, C. Radtke, F.C. Stedile, Appl. Phys. Lett. 90, 081906 (2007)
  • [6] Y. Aoki, H. Hirayama, Appl. Phys. Lett. 95, 094103 (2009)
  • [7] S. Nannarone, M. Pedio, Surf. Sci. Rep. 51, 1 (2003)
  • [8] K.C. Pandey, Phys. Rev. Lett. 49, 223 (1982)
  • [9] K. Heinz, J. Bernhardt, J. Schardt, U. Starke, J. Phys., Condens. Matter 16, S1705 (2004)
  • [10] D.G. Trabada, F. Flores, J. Ortega, Phys. Rev. B 80, 075307 (2009)
  • [11] P. Deák, B. Aradi, J.M. Knaup, Th. Frauenheim, Phys. Rev. B 79, 085314 (2009)
  • [12] R. Di Felice, C.M. Bertoni, C.A. Pignedoli, A. Catellani, Phys. Rev. Lett. 94, 116103 (2005)
  • [13] X. Peng, P. Krüger, J. Pollmann, Phys. Rev. B 72, 245320 (2005)
  • [14] H. Chang, J. Wu, B.-L. Gu, F. Liu, W. Duan, Phys. Rev. Lett. 95, 196803 (2005)
  • [15] R. Rurali, E. Wachowicz, P. Hyldgaard, P. Ordejón, Phys. Status Solidi (RRL) 2, 218 (2008)
  • [16] E. Wachowicz, A. Kiejna, J. Phys., Condens. Matter 24, 385801 (2012)
  • [17] J. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejón, D. Sanchez-Portal, J. Phys., Condens. Matter 14, 2745 (2002)
  • [18] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
  • [19] N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)
  • [20] J. Sołtys, J. Piechota, M. Łopuszyński, S. Krukowski, New J. Phys. 12, 043024 (2010)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv124n502kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.