Journal
Article title
Title variants
Languages of publication
Abstracts
The small-scale magnetocaloric cooling device was developed at Czech Technical University in Prague. The magnetocaloric small-scale cooling system was designed as push-pull system with two permanent magnets with field of about 0.85 T. The construction offers a possibility to alter independently many parameters of the cooling process and it ensures easy way to change working material and design of heat exchangers. The measurements were performed with 35 g of gadolinium as a working material and ethanol as heat transfer liquid. Device was successfully operated at room temperature with maximal heat span of 3.1 K. In the article we report design of the machine and first measurement performed on it.
Discipline
Journal
Year
Volume
Issue
Pages
740-744
Physical description
Dates
published
2013-10
received
2013-04-05
(unknown)
2013-08-06
Contributors
author
- Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
- Institute of Physics ASCR, v.v.i, Na Slovance 2, 182 21 Prague 8, Czech Republic
author
- TechSoft Engineering, Na Pankráci 26, 140 00 Prague 4, Czech Republic
author
- TechSoft Engineering, Na Pankráci 26, 140 00 Prague 4, Czech Republic
References
- [1] A. Aliev, A. Batdalov, S. Bosko, V. Buchelnikov, I. Dikshtein, V. Khovailo, V. Koledov, R. Levitin, V. Shavrov, T. Takagi, J. Magn. Magn. Mater. 272, 2040 (2004)
- [2] R. Bjork, C.R.H. Bahl, M. Katter, J. Magn. Magn. Mater. 322, 3882 (2010)
- [3] E. Bruck, O. Tegus, D.T.C. Thanh, N.T. Trung, K.H.J. Buschow, Int. J. Refriger.-Rev. Int. Froid 31, 763 (2008)
- [4] E. Bruck, O. Tegus, L. Zhang, X.W. Li, F.R. de Boer, K.H.J. Buschow, J. Alloys Comp. 383, 32 (2004)
- [5] S. Jun, Q.Y. Dong, Y.X. Li, J.R. Sun, J. Alloys Comp. 458, 115 (2008)
- [6] A.O. Pecharsky, K.A. Gschneidner, V.K. Pecharsky, J. Magn. Magn. Mater. 267, 60 (2003)
- [7] V.K. Pecharsky, K.A. Gschneidner, J. Magn. Magn. Mater. 167, L179 (1997)
- [8] D. Songlin, O. Tegus, E. Bruck, J.C.P. Klaasse, F.R. de Boer, K.H.J. Buschow, J. Alloys Comp. 334, 249 (2002)
- [9] O. Tegus, E. Bruck, X.W. Li, L. Zhang, W. Dagula, F.R. de Boer, K.H.J. Buschow, J. Magn. Magn. Mater. 272, 2389 (2004)
- [10] P.J. von Ranke, N.A. de Oliveira, S. Gama, Phys. Lett. A 320, 302 (2004)
- [11] Y.X. Zhang, Z.G. Liu, H.H. Zhang, X.N. Xu, Mater. Lett. 45, 91 (2000)
- [12] D. Vuarnoz, A. Kitanovski, C. Gonin, Y. Borgeaud, M. Delessert, M. Meinen, P.W. Egolf, Appl. En. 100, 229 (2012)
- [13] E.Z. Valiev, I.F. Berger, V.I. Voronin, V.A. Kazantsev, Crystallogr. Rep. 56, 1160 (2011)
- [14] L. Jia, J.R. Sun, J. Shen, Q.Y. Dong, J.D. Zou, B. Gao, T.Y. Zhao, H.W. Zhang, F.X. Hu, B.G. Shen, J. Appl. Phys. 105, 07A924 (2009)
- [15] M. Katter, V. Zellmann, G.W. Reppel, K. Uestuener, IEEE Trans. Magn. 44, 3044 (2008)
- [16] T. Kawanami, S. Hirano, M. Ikegawa, K. Fumoto, J. Heat Transfer-Trans. ASME 133, 060903 (2011)
- [17] M. Balli, O. Sari, C. Mahmed, C. Besson, P. Bonhote, D. Duc, J. Forchelet, Appl. En. 98, 556 (2012)
- [18] K.A. Gschneidner Jr., V.K. Pecharsky, Int. J. Refriger. 31, 945 (2008)
- [19] B.F. Yu, Q. Gao, B. Zhang, X.Z. Meng, Z. Chen, Int. J. Refriger. 26, 622 (2003)
- [20] D.J. Silva, B.D. Bordalo, A.M. Pereira, J. Ventura, J.P. Araujo, Appl. En. 93, 570 (2012)
- [21] B.F. Yu, M. Liu, P.W. Egolf, A. Kitanovski, Int. J. Refriger.-Rev. Int. Froid 33, 1029 (2010)
- [22] K. Engelbrecht, D. Eriksen, C.R.H. Bahl, R. Bjork, J. Geyti, J.A. Lozano, K.K. Nielsen, F. Saxild, A. Smith, N. Pryds, Int. J. Refriger.-Rev. Int. Froid 35, 1498 (2012)
- [23] A. Tura, A. Rowe, Int. J. Refriger.-Rev. Int. Froid 34, 628 (2011)
- [24] J. Kastil, P. Javorsky, J. Kamarad, E. Santava, Appl. Phys. A-Mater. Sci. Proc. 104, 205 (2011)
- [25] Y.I. Spichkin, A.V. Derkach, A.M. Tishin, M.D. Kuz'min, A.S. Chernyshov, K.A. Gschneidner, V.K. Pecharsky, J. Magn. Magn. Mater. 316, E555 (2007)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv124n425kz